

St George’s Academy
Computer Science

STUDENT ORGANISER
 Chester Lloyd - 4755

Chester Lloyd Computer Science 2

Table of Contents

3.1 - ANALYSIS OF THE PROBLEM 5

3.1.1 - PROBLEM IDENTIFICATION: 6
3.1.2 - STAKEHOLDERS: 8
3.1.3 - RESEARCH THE PROBLEM: 12
ESSENTIAL FEATURES: 16
LIMITATIONS: 17
3.1.4 - SPECIFY THE PROPOSED SOLUTION: 19
Requirements: 19
Measurable Success Criteria: 20

3.2 - DESIGN THE SOLUTION 23

3.2.1 - DECOMPOSE THE PROBLEM: 24
INCORPORATION OF AGILE DEVELOPMENT: 24
STRUCTURE OF THE SOLUTION: 25
Set up Theme: 25
Load Tasks from the Database: 25
Calculate the number of tasks in the database and create an array of them 25
Calculate the total number of pages for each tab (based on 4 tasks per page) 25
Create the sets of task data 26
Display the Tasks: 26
Add Tasks: 27
Delete Tasks: 27
Information Pages: 27
3.2.2 - DESCRIBE THE SOLUTION: 28
OVERALL PLAN: 28
Header: 28
Home Page: 28
Homework Tab: 29
Coursework Tab: 30
Exams Tab: 31
New Tab: Overview 32
New Tab: Homework 33
New Tab: Coursework 34
New Tab: Coursework 35
LOAD TASKS: 36
Pseudo Code: 36
Data Table: 37
Flowchart: 38
ADD TASKS: 39
Pseudo Code: 39
Data Table: 40
Flowchart: 41
DATABASE: 43
USABILITY FEATURES: 44
3.2.3 - DESCRIBE THE APPROACH TO TESTING: 46
TEST PLAN: 47
TEST DATA: 48

Chester Lloyd Computer Science 3

3.3 - DEVELOPING THE SOLUTION 49

3.3.1 - ITERATIVE DEVELOPMENT PROCESS: 50
PROGRAM SETUP: 50
Menu Bar: 53
Tab Selection: 54
Page Setup: 56
Database – Reading Tasks: 61
PAGE SORTING: 63
DEVELOPMENT REVIEW: 64
LOAD ROWS: 65
PAGE UP: 77
PAGE DOWN: 78
DEVELOPMENT REVIEW: 79
ADD TASK: 80
Input Validation: 86
Writing to Database: 91
Cancel Adding a Task: 93
CLIENT MEETING: 94
Adjustments: 94
Testing of the Amendments: 95
DEVELOPMENT REVIEW: 96
SORTING: 97
Time: Soonest 97
Time: Oldest 97
Task: A-Z 98
Task: Z-A 98
Subject: A-Z 98
Subject: Z-A 98
Refreshing Task List: 99
CLIENT MEETING: 101
Adjustments: 101
Testing of the Amendments: 101
DEVELOPMENT REVIEW: 102
DELETE TASK: 103
Testing of the Amendments: 107
DEVELOPMENT REVIEW: 108
CLIENT MEETING: 109
Adjustments: 109
Testing of the Amendments: 110
Testing of the Amendments: 112
MODIFY TASKS: 113
DEVELOPMENT REVIEW: 118
INFORMATION SECTION: 119
Adding the Information Tab: 119
School Map: 119
Contact Details: 123
Useful Websites: 125
CLIENT MEETING: 128
Adjustments: 129
Deleting a task: 134
Returning to the Tasks Page: 134
Saving a Task: 135
Testing of the Amendments: 140
Testing the Edit Page: 140
Testing the Input Validation: 141
Testing the Update Function: 145
Testing the Delete Function: 149
DEVELOPMENT REVIEW: 151

Chester Lloyd Computer Science 4

3.4 - EVALUATION 153

3.4.1 - TESTING TO INFORM EVALUATION: 154
TESTING THE SOLUTION: 154
Adding a Task: 155
Modifying a Task: 159
Deleting a Task: 161
Sorting Tasks: 162
Overdue Tasks: 172
Databank: 173
USABILITY TESTING: 175
Justification with Evidence: 177
Clean, Simple GUI 177
Input Validation: 177
Appropriate Input Methods 178
Clearly Labelled Buttons 179
TESTING ROBUSTNESS: 180
3.4.2 - SUCCESS OF THE SOLUTION: 184
STUDENT 1: 187
STUDENT 2: 189
STUDENT 3: 191
REVIEW: 193
3.4.3 - DESCRIBE THE FINAL PRODUCT: 195
3.4.4 - MAINTENANCE AND DEVELOPMENT: 196
MAINTENANCE AND LIMITATIONS: 196
FUTURE DEVELOPMENT – IMPROVEMENTS TO LIMITATIONS: 197

Chester Lloyd Computer Science 5

3.1 - ANALYSIS OF THE PROBLEM

STUDENT ORGANISER

Chester Lloyd Computer Science 6

3.1.1 - Problem Identification:
Homework can be forgotten or not recorded which causes an inconvenience to the teacher and
student. This results in the student being behind in their work and a delay in the teacher’s marking.
Homework may be overlooked if there are multiple tasks in a small space on a page or if the student
simply forgets to record it.

Schools spend a lot of money when printing planners every year. Each time is a one-off print job that
will only last the school for a single year before another set is required. A digital solution would be
preferable if used correctly. However, issues could arise with a software solution, especially a mobile
application. Some students could go off task when recording homework on their mobile devices and
partake in inappropriate activities. A desktop application would solve this issue but not all
classrooms or students will have a computer available. As well as this, it may not be as convenient to
use a computer to view homework because a more portable method may be desirable.

Throughout the development of this solution, I will be using multiple elements of computational
thinking.

I will use logical thinking when designing the program structure. It is vital for the planning process
that I thoroughly detail the logical flow of the program and map every branch, decision and stage
onto a flowchart. As a result, I can clearly see how the program will work and a success criteria can
then be drafted in order to test the solution at a number of stages.

To ensure that this solution will be complete and functionally sound, I will deploy the thinking ahead
computational technique when approaching this task. To start, I will plan the features that should be
included. I will then create any logical process or algorithm templates. Whilst doing so, any inputs or
outputs that occur during these algorithms should be determined. I will record any information for
widgets or other solutions that I could refer to. Once, I have all of the data necessary to complete
this task, I will construct the success criteria and begin the development process.

As well as just planning the program, I can use Python’s libraries to import additional resources that
would be very useful. Libraries contain code that can be called within a program to offer additional
functionality. For example, I could use the package, ‘tkinter’ to create a graphical user interface so
that the program is easier to use. I could use a package for connecting to and interacting with a
database, such as ‘sqlite3.’ These modules are very useful and I can continuously use their functions
to reduce the amount of code needed and improve the efficiency of the overall solution.

It could be possible that some parts of this program could be created using the same code.
Connecting to a database and adding in tasks or simply reading them and sorting are two examples
of how I could use this element of computational thinking within my solution. By using code in this
manner, I can create code that is more efficient and will not repeat any similar or identical code.

Chester Lloyd Computer Science 7

Feature How it is solvable by
computational methods

Why it is amenable to
computational approach

Store tasks A database could be used to store
the data for tasks. A front-end GUI
would present this data and allow
data to be inserted and modified.

Using a database for this will keep
an organised structure of tasks.
Each record can be accessed
individually to output them to the
user.

This feature is amenable by a
computational approach as a digital
planner has many benefits over the
traditional solution. They are safer
as data can be backed up by simply
copying the database file. In
addition to this, planners are prone
to damage. If a page got wet, any
ink or writing on that page would
be ruined and therefore the data is
lost.

Sort tasks Again, a database could store each
task with a unique identifier. This
can be used when sorting as each
record ID unique.

A database requires that any dat
stored in a table mut have an ID in
order for the data contained to be
sorted or searched. It is possible to
sort tasks in a normal planner
however it would be very time
consuming to wite out these tasks
again.

Access learning
resources

Add in pages to the program with
the resource’s information. Pages
can be easy to access and there
would be, in theory, no limit to the
number of pages created.

Each page added will not incur any
additional charges as a paper based
planner would. This will reduce
costs and data pages can still be
added at any time, modified or
updated.

The school could create as many
resources that they wanted to add
to this planner as pages can be
easily created and links would be
established in the menu bar to
these pages. The main benefit is
that any resource could be
modified at any time without the
need to re-print any pages. It would
be very difficult to add pages to
each planner once they have been
printed and bineded together.

Chester Lloyd Computer Science 8

3.1.2 - Stakeholders:
People who would be interested in this solution would be any students who find the use of digital
organization useful and aid their learning, or students that are revising for upcoming exams and
want to clearly see what tasks to focus upon. I have opened this up for any students however; it
would be more suitable for Key Stage Four, Key Stage Five or university students. This is because
these students would have better access to computers in which this program can be used. This
solution would be appropriate for a student’s needs as it will offer a number of sorting algorithms so
that they can quickly view the tasks that require attention first. It will help them focus on the most
important tasks available by changing their colours based on their due dates and potentially
removing the overdue tasks that are no longer required. The program will aid their organisation for
school as tasks will be stored in a logical, structured layout where modifications can be made if any
data requires altering.

A planner is a tool that teachers use when communicating with student’s parents and when checking
that the student is using it appropriately. Therefore, teachers would be another stakeholder in this
project. By including a notes section into the program, the teacher could leave comments that could
be accessible by the student and the parents.

Parents of the students would have an interest in this program too. They can read comments from
tutors and teachers and ensure that they are using the organizer appropriately, recording homework
and checking that they are up to date on all their tasks. As a future development, I could allow the
parents to log in and view the student’s data including their timetable, calendar, tasks and any notes
written.

Another stakeholder in this project would be the school. The cost of printing a custom set of
planners every year is very high. By using software as a replacement, this can become much cheaper
and more environmentally friendly. It will also be more convenient as a few dates or pages can be
added in that can be seen by every user instantly rather than printing new planners. As well as this, I
plan to allow the school to add in data pages where school resources can be found, for example: a
school map, contact information, code of conduct, etc. For a future development of this project, the
school could monitor the student’s use of the planner by using a log in. In addition, I could include a
school calendar where all school events would be displayed. This would be a very useful feature as
the student would be able to see any relevant events such as sports fixtures and term dates. The
student’s timetable could be achieved in the same manner.

Chester Lloyd Computer Science 9

Stakeholder Their needs How they will make use of
this solution

Why it is appropriate to
their needs

Student Record their homework,
coursework and exams.

Access educational
resources including
information pages.

They can insert tasks into
the program which can be
sorted.

A resources section can be
accessed by the student to
improve key skills.

The main function of a
planner is to record tasks;
this will be the primary
action that a student would
perform with the traditional
planner. Because of this, it
is vital that the student
should be able to record
any tasks that can be given
at school. As well as this,
tasks can be sorted so that
the user can manage their
time better by sorting these
tasks by due date or by
other task data to prioritise
more important tasks.

Another need is that they
could access additional
support material if
necessary to improve their
learning. This could include
a map, translations, a
periodic table and other
similar material.

Chester Lloyd Computer Science 10

Stakeholder Their needs How they will make use of
this solution

Why it is appropriate to
their needs

Parent Parents should be able
to review the progress
of their child or children
by reviewing their
planners and checking if
their tasks have been
completed.

The schools contact
details would be stored
within a planner which a
parent may need to use
to contact the school.

Planners can be used as
a communication
method between the
teachers and the
student’s parents.

View the schools term
dates.

Parents can monitor the
student’s progress by
checking tasks have been
marked as complete and
that tasks are not overdue.

Contact details provided by
the school would be useful
for any enquiries that
parents may have
regarding current events or
the school.

By adding a notes section,
teachers or form tutors can
add notes for the parents
to read and possibly
contact the teachers if
necessary.

Parents will need to know
when each term starts and
finishes for their own
planning. If these are made
available, then the parents
can use these to make
arrangements without
affecting the studen’ts
attendance.

It is important for parents
to keep track of their child’s
progress and by allowing a
parent to access the
student’s planner, they can
easily view how their school
activities are going. If they
identify an area of concern
within a subject or across
multiple from inspection,
they could consult the
school or raise these
concerns at a parents
evening to resolve any
isues.

Parents must be able to
contact the school when
required. By adding in a
page to view these details
will help the parent as all
forms of contact will be
available.

Parents do not usually see
the student’s teachers
regularly and therefore an
alternative method for
communication is used. A
notes section within a
planner is a common
method for teachers and
parents to communicate.

Term dates will be
indispensable for parents as
planning for their holidays
or other out of school
activities is dependant on
the school’s term times.

Chester Lloyd Computer Science 11

Stakeholder Their needs How they will make use of
this solution

Why it is appropriate to
their needs

School Personalisation of the
product

Schools will add their
branding to their planners.

Applying their logo, colour
scheme or motto on the
product will help present
the overall identity of the
school. Although branding
does not need to be too
prominent, it can improve
with aesthetics and
complement other school
materials and the uniform.

Schools are passionate
about their identity and
public image so they could
add in their styles and logo
to advertise this.

Chester Lloyd Computer Science 12

3.1.3 - Research the Problem:
A company called iStudiez had created a solution to this problem. “The app allows you to easily
manage all your homework and assignments. Assignments view is a comprehensive tool to help you
organize your academic work.” iStudiez Pro for Windows - Best App for Students. Available at:
http://istudentpro.com/ [Accessed 14 Sep. 2016]. This is a quote from their website stating the
advantages of their software, specifically the one page that handles the assignments.

The ‘assignments’ page in this program is very similar to the program that I’d like to make as the
purpose of my solution. Below is an image from their website showing this assignments pages.

Figure 1.1. Assignments Page At: http://istudentpro.com/windows.php

There are many features on this page that will be very helpful to students as well as functional
components for the working of the program. They have every task listed with titles, dues dates,
subject and importance. This is a suitable set of data to have present for each task as it is only the
essential facts that the user can see at a glance and know instantly, the priority of tasks and what
they are. There is also an option to organize the data, the tasks can be sorted by date, course and
priority. I will add in similar sorting options for my tasks pages based on the data that is recorded.

The way in which data is modified in the program is with a right-hand pane. There is a lot of data
collected here which include: subject, task name, description, due date, time, weight and priority.
For the purpose of my program, I may not request all the data as they have here.

This program has the ability to notify the student at a set time. This would be a useful feature if their
program were to be running constantly, even as a background process. Notifications could be in the
form of a pop up box to alert the user of an upcoming event.

Chester Lloyd Computer Science 13

The ‘overview’ page shows three panes. Each complementing each other to provide a general
agenda showing all relevant information for the day.

Figure 1.2. Overview Page At: http://istudentpro.com/windows.php

The first is a schedule with each subject listed in time order where the lesson due soonest is
displayed first. This is different method to display the user’s timetable but only the upcoming lessons
for the current or upcoming days. A very useful asset to the page focusing upon the student’s
agenda.

The next pane consists of upcoming assignments. These tasks are again, listed in time order and
show five pieces of data per task: task, subject, description, priority and grade achieved. Tasks here
can be mark as completed too with the use of a simple check box.

The final pane shows a calendar. The calendar displays the current month only with the ability to
switch between months. The current date is highlighted with a blue filled box within the calendar.
There is also the large text number and the weekday positioned just above this. Each day where the
student has a subject will have the subject’s coloured circle below the day’s number in the calendar.
If the student colour codes their lessons, they could easily see the upcoming lessons at any date.

Chester Lloyd Computer Science 14

Tasks on the overview page can be easily modified. Upon selecting a task, a window will appear with
all of the tasks details. By default, the notes box is selected for editing. The user has a choice to edit
the details for the task or to close the window.

Figure 1.3. Selecting tasks in Overview At: http://istudentpro.com/windows.php

Chester Lloyd Computer Science 15

Another example of an existing solution to this problem was created by a company called
MoonGlow Software. Their software has many features and pages, more than the software above.
Below is a screen shot of the page that is like what I plan to create.

Figure 2.1. Calendar Page At: http://www.moonglowsoftware.com/student-organizer.html

On the calendar page, there is a table of upcoming events. These include lessons, assignments and
study time. Each event includes a name, category, start time, end time and memo. These would be
useful as this is a calendar, therefore the start and end times would be necessary to sort these
events into chronological order. As I am not planning to create a calendar in with my solution, I will
only need one time, a due date. The memo column would be useful however, so that the user can
have a small title and follow with a longer description. Classes, assignment due dates and study
times are added automatically added to this calendar. Reminders can be set for any events either
recurring or non-recurring. These will be in the form of a pop up window that will display any
reminders of any event that the user has set.

All notes are kept organized and searchable. This will allow the user to quickly find any notes of a
task. There is also an integrated recorder that will allow the student to record their lessons and take
written notes at the same time. Therefore, any information that the student may have missed or
would need repeating can be easily found by playing back the recording.

Additional features such as quizzes and flashcards that can be created to test the students. As well
as this, conversion and programmable formula calculators are included to aid the user in their
studies.

http://www.moonglowsoftware.com/student-organizer.html

Chester Lloyd Computer Science 16

Essential Features:
Lists or tables of tasks. This is very important as the user should be able to see essential information
about a task and have the ability to sort this list. With this, the user has the option to easily sort their
tasks which isn’t easily, nor efficiently, possible to do without the use of computational methods. As
well as sorting, the tasks can change in appearance, so that they could change colours based on
importance or when it is due or even when expired, if not deleted. This shows the user which tasks
to focus on.

The ability to edit a task, which is easily done with both computational and non-computational
methods. However, using software to achieve this will result in cleaner, tidier sets of tasks. If the
date of the task needs changing, for example; due to an extended deadline, then the program can
move this task and put it in the correct place, if the list is sorted in date order.

There should be an efficient page system that allows the user to scroll through tasks. If there are too
many to fit on a single page, there should be navigation buttons with clear instructions and
indication that there will be further pages. This is important as the user should be able to create and
delete many tasks without any issues with viewing them all. There should be a reasonable number of
tasks displayed on a single page to reduce the need to change pages.

View important data relevant to the school, student or courses taken. This is another fundamental
property of a school planner that should be incorporated into this program. I plan to add an option
into the menu bar that can be used to access this data. The information displayed should be the
details about the school.

Chester Lloyd Computer Science 17

Limitations:
This program can only be used on a computer. Although the operating system is very flexible, Linux,
Windows or Mac, using a computer means there is little portability when checking or adding tasks.
This is not suitable in schools or classrooms without computers, making this solution unsustainable
and limited in use. It is also not an efficient solution for on the go use either. Another issue is the
loading time of the computer as the computer must be loaded before my program can be viewed by
the user to review their tasks. Checking a planner or a written task sheet requires little time as its
just reading from a page.

Limitation Justification

The computer running this program must have
Python 3.5 installed.

This is required to run the program as it is
written in the Python programming language.

It must also be version 3.5 as this contains the
correct modules that I have imported for use in
my program, such as tkFont and sqlite3 where
some modules do not exist on previous
versions. In addition to this, the syntax that I
have written this program in is specifically for
3.5.

All task data is stored in a database file. This
database is stored locally on the machine
running the software.

All data is written to the program file’s
directory. This requires full access in order to
communicate correctly with the database and
execute the main Python program. It must be
able to read the database to load the tasks into
the program, it must be able to write here as it
should be able to save user’s tasks and finally it
must be able to execute files from this location
in order for this program to load. A limitation
here is that there will be no cloud storage
available to access the data on multiple
machines.

The software will only run on a computer. I have written this in Python using Tkinter to
handle my GUI. This is only supported on a
computer and therefore it would not be easily
transferred to a mobile device. Instead, a new
application would need to be created for
specific mobile operating systems.

Will not be able to store pictures with tasks. Some tasks may require an illustration or a
sketch with annotations, especially for practical
based activities. This program will not be able
to store pictures with the task data. Even if I
were to add this in for further development, I
would need to create a method to input
drawings, however, this would require the user
creating a sketch with a mouse or trackpad
which wouldn’t work very well at all. Because
of these reasons, a normal planner would be
able to accommodate for this but the software
solution would not.

Chester Lloyd Computer Science 18

Parents would not be able to sign the planner. Usually, parents would sign their child’s
planner on a weekly basis upon checking their
progress. Their teachers or form tutors would
check that their planners have been signed and
then sign it themselves. This is a working
system where both, teachers, and parents,
know that the other party has reviewed that
week in the planner. This helps to quickly
resolve any issues if the parent or teacher were
to identify any areas of concern where tasks
were not completed. In addition, it allows for
notes to be written and read by either party to
act as a form of communication. This would be
unable to work as effectively with software as
there wouldn’t be an effective input method to
input a signature and is therefore a limitation
to this program.

Chester Lloyd Computer Science 19

3.1.4 - Specify the Proposed Solution:

Requirements:

These are the initial requirements for the software that I plan to include for my program.

Requirement Justification

The program will present tasks to the user in a
page system.

The user must be able to view all of their tasks
that they have recorded. By displaying the
tasks, the user can review their upcoming
events as they can with a conventional planner.

A page system is required so that the screen is
not overcrowded with information and that the
user will not lose focus. It will also present the
data more clearly and improve the ease of use
for the software. By splitting tasks into multiple
pages, the student can quickly see the tasks
that are due in soonest without the need to
browse through multiple pages in a standard
planner.

The program must allow the user to easily
insert a task.

One of the main features of a planner is to be
able to record tasks. Therefore, this is an
integral part of the software and must be
included. I will design a page that is dedicated
to accepting user input to the program. By
separating this function into a new page, the
user will only focus on one part of the program,
no other elements will be available at that
point.

The program must allow the user to delete a
task.

Once a task has been completed, or the user
no longer wants to keep a task, this should be
able to be removed. It is important that tasks
can be removed so that they will no longer
appear first in the list, blocking other, more
important, tasks form view.

The program must allow the user to edit a task. There are many reasons why a student may
need to modify a task, for example, there is an
extension and the due date needs to be
adjusted or a spelling mistake may have been
made whilst typing in the subject. To
accommodate for these cases, every tasks
must be able to be modified.

Chester Lloyd Computer Science 20

Measurable Success Criteria:
A computer program should be used to organise school activities to save time and money when
manually writing them out. This time could be better spent learning.

Measurable Success Criteria Justification

The program should offer a sorting system. This will allow the user to view their tasks in an
order that they select. These sorting methods
include sorting by, task name, subject, due date
and the type of task.

By including this feature, students could easily
identify what they need to focus upon in terms
of their upcoming tasks. A sorting method will
present the tasks in alternative orders based on
the data for all tasks involved.

Overdue tasks must be written in red text. I have chosen to use red because this is a colour
often associated with negativity. By only altering
the text colour, the overdue task will become
more prominent on the page and stand out to
the user to alert them that this task is currently
overdue.

Automatically delete old tasks. An automatically deleting function would
remove old tasks that are a set number of days
past the due date. This would be a useful feature
as older tasks are removed automatically so the
user can keep track of current tasks to be
completed. By leaving tasks that have been
completed but not removed will build up
overtime and would remove the benefit of a
software solution because outdated information
will be displayed first.

An option to load a page specifically to add a
task.

I have chosen to create a separate page for
when the user adds a task to the planner. This is
because it will avoid confusion as there will only
be one activity to focus on; adding a new task.
This program should be as easy to use as
possible to ensure that it is efficient in its role of
a student planner for all years.

Chester Lloyd Computer Science 21

Tasks must be able to be modified. In a conventional planner, tasks can be altered
but not easily or sometimes not clearly as
crossing out previously written words can
become harder to read.

To take full advantage of a computational
solution, it would be suitable to allow the
information entered by the user to be easily
adjusted for a more cleanly presented page.

As stated previously, there are many reasons to
adjust any part of a task and therefore I will
allow the user to alter any piece of data for any
task in the program.

Tasks must be able to be deleted. Tasks that are no longer required should be able
to be removed to reduce redundant information.
The program will list tasks based on their due
date where the task due soonest will appear
first. By leaving old, completed tasks in the
program would reduce the benefit of this sorting
algorithm as the more important tasks haven
been moved further back in the pages.

There should be school information available to
access (including: a school map, term dates,
contact details and website links).

The program should act as a student’s planner;
therefore, there should be multiple aspects to
this program. The main purpose is to store and
sort tasks. In addition to this, I will be adding in a
databank where the user can access important
information about their school.

The reason for including this data is to improve
the functionality of the program whilst reducing
need for external material that can be found in
the paper based planners.

The software must be presented clearly so that it
is easy to use.

In order to success as a software solution, the
software must be presented clearly so that it is
easy to use. It should be presented in a logical
manner where widgets are placed with care and
appropriately. The design should be aesthetically
pleasing.

All of these design factors will allow all year
groups to make use of this software reducing
need for other software solutions for the school.
A clean design would entice students to make
use of this utility, rather than deter them if it
becomes overcomplicated and difficult to
understand.

Chester Lloyd Computer Science 22

Chester Lloyd Computer Science 23

3.2 - DESIGN THE SOLUTION

3.2 - DESIGN THE SOLUTION

Chester Lloyd Computer Science 24

3.2.1 - Decompose the Problem:

Incorporation of Agile Development:
I will adopt the Agile methodology when creating my program. I will use this group of methods
because it allows me to easily adapt to changes in requirements. This is a vital part in the developing
stage as I will have regular meetings with my client. These meetings will involve me asking questions
about current prototypes or the progress on the solution so far. The client may suggest that they
would like to see a feature added or even removed. They may suggest that come features should be
altered in some way and I will need to adapt to these suggestions. An Agile approach will suit this
project perfectly because of this.

This is an iterative process. A term that hereby means that there will be a repeating cycle of
development involved. The program will not be complete within the first sprint. There will be
constant change as I develop the solution further. Every iteration will produce a version of the
software, where each will build on the previous with an increasing set of requirements. I can review
the solution at the end of each iteration and evaluate to what extend the current version meet the
measurable success criteria. This will take into account the client feedback once I allow them to test
it. Any requirements that have not been fulfilled in their entirety or any requirements that have
been suggested can then be added in the subsequent build.

The result of this will be a program well adapted to the client’s feedback and therefore a vastly
improved solution for use by students. This is because students would be testing these prototypes at
the end of each iteration to provide their thoughts. By working with students, I can adapt this very
well for my intended end users.

Chester Lloyd Computer Science 25

Structure of the Solution:
I will break this program down into functions. Each function will be a page or the set of instructions
called due to the interactions of widgets on the GUI by the user. I have chosen to do this because it
will allow me to focus on designing and coding one page at a time. Once a page has been completed,
I can collect client feedback to improve the prototype before moving to the next component. Whilst
doing so, I will be given a larger set of requirements to follow to ensure that the program meets the
user’s needs. By regularly meeting with the client, the solution will be exactly what the user wants
and no time should be wasted developing unnecessary features that the client did not ask for. This
reduces risk as I will be less likely to run into timing issues where I can’t include a feature for a client
because of this.

I will then split the main program into the following components:

• Set up theme

• Load tasks from the database

• Display the tasks

• Add tasks

• Delete tasks

• Information pages

Set up Theme:
I plan to split the setup of the theme for each page into three; creating the title bar, creating the
menu bar and displaying the tabs. This will allow me to easily manage each part of the main
program’s theme without it affecting the running of the program or causing objects to block the
view of others. By splitting up these three into separate functions, they can be easily edited and the
changes will work for the whole program, therefore the theme will be the same for every page. Also,
the order in which they load will mean that they shouldn’t interfere with how the others will appear.

Load Tasks from the Database:
This component of the program will involve multiple stages. The first, I will open a connection with a
database. Depending on the tab that the user has currently selected (Overview, Homework,
Coursework or Exams) I will select every task that is in that task type create a two-dimensional array
containing all the data for each record. This will allow me to use the data that the user has selected
and easily use it anywhere within the program.

The next part is to split this data up so that it can be displayed to the user. I will be splitting up this
data so that there are four tasks to a page and a page navigation system will be in place where the
user could scroll through the pages of tasks.

Calculate the number of tasks in the database and create an array of them
The way in which this algorithm should work is that, I will create a variable to store the total number
of tasks selected. At the start of the algorithm, I will set this to ‘0’ as there will be no tasks at this
point. Then, for every task in the array of tasks, it will increment the number of tasks by one. This
will then have the value of the number of tasks in the database.

Calculate the total number of pages for each tab (based on 4 tasks per page)
The next stage of this algorithm is to calculate how many pages each tab would use. Basing the
number of tasks per page to a maximum of four, I can calculate: how many pages there will be in
total, how many full pages there will be (sets of four tasks) and how many remaining slots will be on
the final page (if there are less than four tasks on a page). These three variables will be very
important when organizing the tasks into pages.

Chester Lloyd Computer Science 26

Create the sets of task data
Once the data has been split and calculated, it now needs to be put back together into pages. I will
call these ‘sets’ as there will be sets of tasks where a full set would contain four tasks. To track the
current position of the user through theses sets of tasks, I will use an array called ‘progress.’ Where
this variable will be declared before it is to be used, ensuring that the progress array will be empty
from the start.

For the amount of sets, a minimum and maximum number of tasks is then calculated. This will be
achieved by using the number of each set and multiplying it by 4 and for the maximum number,
adding 3 to minimum value. These two values are then added to the progress array. This array will
contain the start and end values for every task in every set.

For example:
If there were 10 tasks in the database, then this array would be created, ‘0,3,4,7,8,10.’
Tasks 0 to 3 make the first set (page 1)
Tasks 4 to 7 make the second set (page 2)
Tasks 8 to 10 make the final set (page 3)

Now this array will be used for showing the relevant tasks for the pages. The numbers within the
array can be considered to be paired. When inserting tasks into a page, the use of this array makes it
possible.

Display the Tasks:
To insert the appropriate tasks into a page, I can use the variables previously calculated with my
algorithm. First, I will need to create a variable called ‘set’, which will be the set of data to insert.

In the tasks array, I can use their location number to retrieve the correct set. I will achieve this by
using the progress array for the tasks. Select the tasks in the array ‘tasks’ which have the positions of
the page number in the in the progress array and the tasks which have the position of the page
number plus one in the progress array. Select any values between these two positions in the tasks
array too.

For example:
tasks = [‘Complete 1.1.3 Notes’, ‘Finish EPQ Feedback’, ‘Exercise 3A’, ‘Exercise 9B’, ’ET6 Plan’, Read
P88’]
progress = [0,3,4,5]
page = 0
set = []

When loading page one, the values would be selected as follows:
sets = tasks[progress[page]:progress[page+1]+1]
sets = tasks[progress[0]:progress[1]+1]
sets = tasks[0:3+1]
sets = tasks[0:4]
sets = ‘Complete 1.1.3 Notes’, ‘Finish EPQ Feedback’, ‘Exercise 3A’, ‘Exercise 9B’

When loading page two, the values would be selected as follows:
sets = tasks[progress[page]:progress[page+1]+1]
sets = tasks[progress[2]:progress[3]+1]
sets = tasks[4:5+1]
sets = tasks[4:6]
sets = ’ET6 Plan’, Read P88’

Chester Lloyd Computer Science 27

Add Tasks:
I have split this into its own section as this is a main component in this solution and should be able to
be used anywhere in the program. This section should work by creating a screen where the user can
input all the details for a task. These details include: the task’s name, the subject of the task, the due
date and the type of task.

There should be an option to delete the data that the user has entered so that the task will not be
added and the option to save the data. Saving the data will insert the information entered into its
own record within the tasks table of the database. If this task is saved, the tasks page will load and
the task array refreshed so that the new tasks should then be visible.

Delete Tasks:
I will open a connection to the database and use the delete SQL statement to remove the task by its
ID. I can get the ID from the tasks array assigned to the task. I will use the ID in this case and no
other field as the ID is the unique variable in this table and using any other field could delete other
tasks too.

Information Pages:
As this project is essentially a digital school planner, it is important that I include the other aspects
that come with the conventional planner, not just the recording of tasks.

I will include the following three information pages:

• School map

• Contact details

• Useful websites

I chose to include a school map as this can help students who are new to the school. It will allow
them to easily find where their lessons will be or where other facilities within the school can be
found. This page will be made up of a single picture that will contain the map.

The school’s contact details will also be displayed on another page. I will make all relevant
information for contacting the school available by inserting text onto the page.

Any useful websites that students would find useful will be listed on a page with hyperlinks that will
allow the user to open these easily.

Chester Lloyd Computer Science 28

3.2.2 - Describe the Solution:

Overall Plan:

Header:

I will be using a consistent theme throughout the program, therefore I will use a header across every
page in the program. As this program will allow the user to store multiple types of task, I will be
using a system to view the tasks for this type. Tasks will be assigned to a task type; homework,
coursework or an exam. I created four links based on these three task types. When clicked, the
relevant tasks should be shown on a page. The fourth option I included was the overview link. I had
decided that the student might want to view all their tasks regardless on the type.

I will also colour code these links to show contrast between different task types and pages. I plan to
follow the colour scheme throughout the program.

Home Page:

Overview Homework Coursework Exams

Overview Homework Coursework Exams

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Chester Lloyd Computer Science 29

This is how I plan for the tasks to be displayed to the user. Each task will be contained within its own
individual coloured rectangle. This will clearly split the data up on the page. I have only chosen to
reveal the task name, the subject and the due date to the user. This is because it will be the only
relevant data required for the student when viewing the list.

I have followed the green colour scheme with this page as this represents the overview tab. The
buttons and task rectangles follow this with differing shades of green. I had decided that the user
should first be shown the overview tab as the home page because this contains every single task in
the program. This will also show the task that’s due soonest out of every category.

Each page will have three buttons, the first will return to the previous page of tasks, the second will
load the next page of tasks and the third can be used to add tasks to the program. I had decided to
use two buttons to control the scrolling as it will be easy for the user to navigate through the pages
as they are clearly marked with arrows. The add task button will proceed to a new page which will
show all the inputs to create a task.

Homework Tab:

This tab will use the same template as the overview tab. The only differences in this page is that the
colour scheme is now blue and the only tasks displayed are tasks with the task type as ‘homework.’

Overview Homework Coursework Exams

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Chester Lloyd Computer Science 30

Coursework Tab:

This tab will use the same template as the other tabs. The only differences in this page is that the
colour scheme is now orange and the only tasks displayed are tasks with the task type as
‘coursework.’

Overview Homework Coursework Exams

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Chester Lloyd Computer Science 31

Exams Tab:

This tab will use the same template as the other tabs. The only differences in this page is that the
colour scheme is now red and the only tasks displayed are tasks with the task type as ‘exams.’

Overview Homework Coursework Exams

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Chester Lloyd Computer Science 32

New Tab: Overview

When the user clicks the lower right hand button containing the add icon, this page is shown. I have
split this up into two boxes. In the box on the left, I have added two entry boxes, one that is labelled
‘Name’ and the other is labelled ‘Subject.’ Here, the user should enter the name of the task that they
want to create and the subject that this task is for.

On the right, I have chosen to create a larger rectangle. Within this rectangle, I plan to add in three
four drop down menus: where the first three are used to set the due date of the task and the final
one is to set the task type. Using three dropdown menus for the date picker would allow a user to
input any date easily. The final box will contain three values, homework, coursework and exams. The
task type set here will be used when loading the pages of tasks. This is an important piece of data as
the tabs depend on this to show tasks specific to the tab.

The page navigation buttons in the lower left will be replaced with a single delete button. I plan for
this to delete any changes that the user had made in the current page and then return the user to
the previous page where the tasks are loaded in again. In the lower right, the add task button will be
replaced with a confirm button. Once the user has added in the details of the task that they would
like to add, they can click this button to save the task into the program. Like the delete button, the
program should load the user’s previous page and the new task should be listed within the tasks
page.

Overview Homework Coursework

Details

Name

Subject

Exams

Due Date & Type

Day Month Year

Type

Chester Lloyd Computer Science 33

New Tab: Homework

This page will load when the user clicks the add task button when in the homework tab. The theme
will continue, as blue buttons will be used. They will all operate in the same way. The homework tab
will be loaded once the user has clicked the delete or add button and their functions have
completed.

I have not added in a task type option for this page, as it should be assumed that the task to be
added would be a homework. I will use this idea for my other two tabs in the program.

Overview Homework Coursework

Details

Name

Subject

Exams

Due Date

Day Month Year

Chester Lloyd Computer Science 34

New Tab: Coursework

This page will load when the user clicks the add task button when in the coursework tab. The theme
will continue, as orange buttons will be used. They will all operate in the same way. The coursework
tab will be loaded once the user has clicked the delete or add button and their functions have
completed.

I have not added in a task type option for this page, as it should be assumed that the task to be
added would be a coursework. I will use this idea for my other two tabs in the program.

Overview Homework Coursework

Details

Name

Subject

Exams

Due Date

Day Month Year

Chester Lloyd Computer Science 35

New Tab: Coursework

This page will load when the user clicks the add task button when in the exams tab. The theme will
continue, as red buttons will be used. They will all operate in the same way. The exams tab will be
loaded once the user has clicked the delete or add button and their functions have completed.

I have not added in a task type option for this page, as it should be assumed that the task to be
added would be an exam. I will use this idea for my other two tabs in the program.

Overview Homework Coursework

Details

Name

Subject

Exams

Due Date

Day Month Year

Chester Lloyd Computer Science 36

Load Tasks:
When the program loads, it must show the user every task in the database. This is because I will use
the overview tab as the ‘home page’ of the program. When this page loads, or through any of the
other three tabs, I will need a function that will set up the tasks in order to be presented upon
request.

The algorithm here will work by fetching every task from the database for the selected tab. Once
complete, the data will be added to a two-dimensional array of tasks. Then I will apply logic to create
three variables. These will be required as there can only be up to four tasks displayed at any one
time and they should all be shown in order where a page navigation should give the user control of
the current set.

To start, the number of tasks is calculated. This will be required when splitting the tasks into their
sets of four. To find the number of sets (groups of four adjacent tasks) will also find the number of
pages required.

• If there are no tasks, then there are zero sets so therefore there will also be zero pages.

• If the number of tasks is a multiple of four, the number of sets is this multiple.

• If there is a remainder when dividing by four, sets is equal to the amount of times four will
go into the number of tasks and then increase this value by one.

Once the number of sets has been calculated, the index of each task in the array should be grouped
in pairs so that first and the last task’s index is saved. That will allow me to choose every task
between these two values when displaying each page.

Pseudo Code:
START
Tasks = SELECT * FROM TASKS
TaskNumber = 0
FOR record IN Tasks:

TaskNumber += 1
END FOR
SetsRemainder = TaskNumber % 4
IF TaskNumber == 0:

Sets = 0
ELSE IF TaskNumber < 5:

Sets = 1
ELSE IF SetsRemainder > 0:

Sets = TaskNumber // 4
Sets += 1

ELSE IF SetsRemainder == 0:
Sets = taskNumber // 4

END IF
Progress = []
FOR i IN RANGE(LENGTH(Sets)):

MinTask = (i) * 4
MaxTask = MinTask + 3
Progress.append(MinTask)
Progress.append(MaxTask)

END FOR
END

Chester Lloyd Computer Science 37

Data Table:

Variable Data Type Rationale

𝑇𝑎𝑠𝑘𝑠 Array Every record stored in the database table, ‘TASKS’ will be
stored in this array. It must be an array as this can be
used to select specific pieces of data when using it in the
program.

𝑇𝑎𝑠𝑘𝑁𝑢𝑚𝑏𝑒𝑟 Integer This will be used to store the number of tasks that are in
the array, Tasks.

𝑟𝑒𝑐𝑜𝑟𝑑 Integer A temporary variable that will be used in an iteration loop
to determine the number of tasks stored in the database.

𝑆𝑒𝑡𝑠𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 Integer Stores the number of tasks that are left over when the
total number of tasks is divided by 4. This will be used to
determine how many tasks will be left over as there are 4
to a page.

𝑆𝑒𝑡𝑠 Integer Stores the number of sets of tasks. A set is considered to
be 4 tasks. Any remaining tasks will also increase the
‘Sets’ variable by 1.

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 Array This will be used as a page pointer. An array is important
as it can be appended to and future aspects of the
program will rely on selecting certain positions in this
array to find a value of tasks to display.

𝑖 Integer A temporary variable that will be used in an iteration loop
to populate the ‘Progress’ array.

𝑀𝑖𝑛𝑇𝑎𝑠𝑘 Integer Stores the variable for the variable, ‘i’ multiplied by 4.
This relates to the position in the ‘Tasks’ array where the
task at this location will be the first in the page.

𝑀𝑎𝑥𝑇𝑎𝑠𝑘 Integer Stores the variable for the variable, ‘MinTask’ added to 3.
This relates to the position in the ‘Tasks’ array where the
task at this location will be the last in the page.

Chester Lloyd Computer Science 38

Flowchart:

Chester Lloyd Computer Science 39

Add Tasks:
This element of the solution will be accessed by a button on any of the four tasks pages or through
the use of the menu bar. When this button is pressed, the current page is cleared and is replaced
with the add task page. This page will contain entry boxes and drop down menus for the user to
input all the relevant information.

Pseudo Code:
START
Name = USERINPUT
Subject = USERINPUT
Day = USERINPUT
Month = USERINPUT
Year = USERINPUT
Type = USERINPUT
IF Name = “” THEN
 OUTPUT “Task name cannot be left blank.”
 RETURN
ELSE IF Subject = “” THEN
 OUTPUT “Subject cannot be left blank.”
 RETURN
ELSE IF Day = “” THEN
 OUTPUT “Day cannot be left blank.”
 RETURN
ELSE IF Month = “” THEN
 OUTPUT “Month cannot be left blank.”
 RETURN
ELSE IF Year = “” THEN
 OUTPUT “Year cannot be left blank.”
 RETURN
ELSE IF Type = “” THEN
 OUTPUT “Task type cannot be left blank.”
 RETURN
END IF
30_days = [4,6,9,11]
31_days = [1,3,5,7,8,10,12]
IF Month IN 30_days AND Day > 30:
 OUTPUT Month + “can only have 30 days.”

RETURN
ELSE IF Month IN 31_days AND Day > 31:
 OUTPUT Month + “can only have 31 days.”

RETURN
ELSE IF Month = 2:
 LeapYear = False

IF Year % 4 = 0:
LeapYear = True
IF Year % 100 = 0:

LeapYear = False
ELSE IF Year % 400 = 0:

LeapYear = True
END IF

END IF
 IF LeapYear = False AND Day > 28:
 OUTPUT “Not on a leap year, February can only have 28 days.”
 RETURN
 ELSE IF LeapYear = True AND Day > 29:
 OUTPUT “On a leap year, February can only have 29 days.”
 RETURN
 END IF
END IF
INSERT INTO TASKS (Name, Subject, Due Date, Type)
END

Chester Lloyd Computer Science 40

Data Table:

Variable Data Type Rationale

𝑁𝑎𝑚𝑒 String Stores the name of the task entered by the user.

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 String Stores the subject of the task entered by the user.

𝐷𝑎𝑦 Integer Stores the day for the due date of the task entered by the
user.

𝑀𝑜𝑛𝑡ℎ Integer Stores the month for the due date of the task entered by
the user.

𝑌𝑒𝑎𝑟 Integer Stores the year for the due date of the task entered by the
user.

𝑇𝑦𝑝𝑒 String Stores the type of task entered by the user.

30_𝑑𝑎𝑦𝑠 Array An array that stores the integer value of every month that
has a maximum of 30 days.

31_𝑑𝑎𝑦𝑠 Array An array that stores the integer value of every month that
has a maximum of 31 days.

𝐿𝑒𝑎𝑝𝑌𝑒𝑎𝑟 Boolean A variable that is true when the date selected falls on a
leap year and false if it does not. Used to verify the day
selected when the month selected is February.

Chester Lloyd Computer Science 41

Flowchart:

Chester Lloyd Computer Science 42

Chester Lloyd Computer Science 43

Database:
I will be using a database for storing all details about a task. I have chosen to store the data in a
database as I think it will be the best form of data storage and the most suitable for this project.
Alternatives that I could use include storing the data in raw text files or in JSON format. The
disadvantage of these are that data cannot be ordered, modified or removed that easily. A database
can easily sort data, output ordered data, insert records and delete or modify.

Within my database, I will be using a single table to store the tasks. The table structure will be as
follows:

Column Data Type Rationale

𝐼𝐷 INT PRIMARY KEY Every record stored in a table must have a unique identifier in
order to be able to edit the data. This unique ID will allow me
to access a specific record and perform crucial operations such
as delete or modify.

𝑇𝐴𝑆𝐾 TEXT The task name will be recorded within in this field. The data
type will be text so that the user can enter any character as
their task name.

𝑆𝑈𝐵𝐽𝐸𝐶𝑇 TEXT The task’s subject will be saved in this field. Again, the type will
be text as the user should be able to insert any character for
their subject.

𝐷𝐴𝑇𝐸 DATE The date field will be used to save the due date of the task.
The date type will require data to be entered in the format
YYYY/MM/DD. By using the date type, I will be able to sort the
records by their dates too.

𝑇𝐴𝐵 TEXT As there are four main tabs, these will select the data with
their tab. This filed will store one of three values that will
correspond to one of the three tabs.

Chester Lloyd Computer Science 44

Usability Features:
I will be using various forms of usability features in this program.

The design will be clean, clutter free with a simple layout. The purpose of this is to reduce confusion
and increase productivity through the simplicity of displaying the relevant data clearly to the
student. Buttons will al follow the same theme. I will use Google’s Material Design floating action
button combined with their icon set to produce each button within this solution.

I will select appropriate input methods for the GUI. For example, I will use dropdown menus for date
selection rather than an entry box for ease of use. I will not use any scrolling pages where widgets
are partial or not at all in view. By doing so, the user can easily see what is on screen and the data
that they require form the program.

All input methods should use validation where any invalid inputs will result in a message box
explaining the reason for the error. This will inform the user on why their input was invalid, allowing
the user to understand the problem and correct it easily.

Usability Feature Justification

Clean, simple GUI The software is aimed at a wide range of
students of differing abilities. The user
interface must accommodate for this. A simple
to use program with a bloat free design will
make the planner easier to use. By only
including the essential features of a planner as
described in the analysis of the project, and
reducing the amount of information displayed
on any one screen, will limit the chance of user
error. This is because it will help avoid
confusion as unnecessary information causes
distraction.

Appropriate input methods Input methods must be chosen carefully so
that entering data about a task is as easy as
possible. The purpose of this feature is to avoid
users from becoming reluctant to use the
software as it could be too difficult or annoying
to enter tasks. The computational solution
must take advantage of this and adapt to
improve ease of use.

Input validation All data entered into the program must be
validated. By doing so, the program will be
protected from any potential errors from illegal
entries. The program must be stable and no
vulnerabilities to input methods should be
available. Users may enter invalid data
unknowingly or even knowingly and the data
must not be allowed to be processed. By only
allowing valid data, the tasks stored will
become structured and well established with
all required data needed for the user.

Chester Lloyd Computer Science 45

Clearly labelled buttons This is an extension from the GUI feature.
Buttons can be labelled in three main ways by
assigning them a, label, an icon or both. To
ensure that the user can easily understand the
function of a button, the labels must be short
and specific and any icons must be clear and
visible. The reason for this is because it is
important that the user can quickly understand
what function a button will do without
accidentally modifying their data with
unexpected outcomes.

Chester Lloyd Computer Science 46

3.2.3 - Describe the Approach to Testing:
I will be using a testing table after each stage of development. This will help me test that the code I
have written works as I intend. Each row in the table will be an individual test that I will perform. I
will use four columns; the first will contain the test name, what I will be testing for. The second I will
write in any test data that I will be using. For example, if I am testing an input into the program, I will
write the data that I will use in there. The third column is where I am going to write my expected
outcome of the test. Each case I will write as if the test will pass when it is performed. If this
outcome is not achieved, then the test would be considered a fail and I will have to develop this
further. The final column of the table is where I’ll include a screenshot of the program to show the
output. I could attach screenshots of the shell too if any errors are produced. This will be used when
revisiting the code that caused these errors.

An example of the table that I will be using:

Test Test Data Expected Result Actual Result / Evidence

Chester Lloyd Computer Science 47

Test Plan:

Success Criteria Approach to Testing

The program should offer a sorting system so
that the user can view their activities based on
importance, time, subject and task. This would
be useful as it could easily identify what the
user needs to focus on and show which tasks
are due soon compared to others.

I will insert a variety of tasks where there will
be different data in each task. I will then apply
each sorting algorithm and verify that the tasks
have been reordered correctly.

Any tasks that have a due date that has expired
should be highlighted red so that the user can
clearly see which tasks are overdue.

I will set the due date for three tasks so that
one task is the current date, the next is the day
after and the other task is set to the date
before the current. The task that is due in for
the previous day should be the only task
highlighted in red.

The computer could include an automatically
deleting function where it can remove any
older tasks automatically so the user can keep
track of when tasks have been completed.

Tasks that have expired for a set number of
days should could be deleted automatically. To
test that this feature worked, I can create a
task and set the auto delete function to a single
day and then alter the due date to the day
before its current due date and it should
automatically be removed.

There must be a straightforward method to add
tasks into the program. The data that should be
collected include the task’s name, subject, due
date and the type.

I could incorporate this test with my usability
testing whereby clients could use my program
and rate how easy they thought it was to add
tasks in this program. An average of these
results could be used to assess the overall
review by the users.

For any task that has been recorded, the user
should also be able to modify any data related
to the task and save these changes.

Insert a task into the program and then
attempt to change data in each field. Upon
saving these changes, the program should
show the task with the updated information.

Tasks should be able to be deleted too. I will edit this by inserting a task and then
delete it afterwards. If the task is removed, the
criteria has been met and the feature works.

The program should act as a student’s planner;
therefore, there should be multiple aspects to
this program. I will add in features where the
students can write their homework,
coursework deadlines and exam dates. As well
as this, I will include a data bank where
information relevant to the school can be
stored, for example: a school map, term dates,
contact details, website links, etc.

Add a task for each task type to ensure that the
different pages load the correct tasks.

To verify that the school data loads correctly,
I will load each data page and assert that they
load correctly.

The software must be presented clearly so that
it is easy to use. It should be presented in a
logical manner where widgets are placed with
care and appropriately. The design should be
aesthetically pleasing.

I cannot test this myself as the appearance of
the program and its design is an opinion of the
observer. Therefore, I will use feedback from
clients.

Chester Lloyd Computer Science 48

Test Data:

Test Test Data Justification

Add a task
with valid
details.

Differentiation
Maths
12/12/2016
Homework

The purpose of this test is to verify that a task created with
valid details should be saved. The planner must be able to
save any task with details that pass all validation (such as the
example given).

Add a task
without a
name.

Maths
12/12/2016
Homework

This will test the input validation on the text entry for the
task name. This will verify that an incorrect name will not be
allowed to save. By doing so, this will protect the program
from errors later on when it would attempt to load an empty
piece of data.

Add a task
without a
subject.

Differentiation

12/12/2016
Homework

A test very similar to the previous where an invalid subject
entry could cause potential crashes in the future. This must
be tested to ensure that this cannot happened and keep the
program running bug free.

Add a task
without a due
date.

Differentiation
Maths

Homework

This software will rely on the due date given as all tasks will
be sorted with the tasks due soonest ordered first in the list.
If the due date is not available, the task cannot be sorted and
an error would occur attempting to sort a null variable. This
test will confirm that this bug will not occur if it successful.

Add a task
with an
invalid date.

Differentiation
Maths
31/31/2016
Homework

Invalid dates should not be allowed in any software. If this
data is stored in a database table under the date data type,
then an illegal date would cause the database to produce
errors. The errors would result in the task not being saved
and potentially lose any data that was entered by the user for
the current task. To eliminate any chance of date related
failures, the validation must be tested.

Delete a task. N/A Deleting a task is an important function within this program.
There is no test data for this test as it will be simply removing
a task, not entering any data.

Chester Lloyd Computer Science 49

3.3 - DEVELOPING THE SOLUTION

3.3 - DEVELOPING THE SOLUTION

Chester Lloyd Computer Science 50

3.3.1 - Iterative Development Process:
During the development of this program, I will be creating many variables. Therefore, I will use
appropriate names for each and every one. This is because I will need to keep track of them and
monitor their changes throughout the running of the program. Assigning names that describe what
the variable will hold will make the process easier and will not be likely to confuse them.

Program Setup:
The first thing I did when writing the program was creating a class for the whole program to run in.
The reason I chose to do this was so that every variable or data in widgets could be easily collected
and manipulated globally. This will reduce any errors when attempting to retrieve inputs or storing
them in different functions. Every line of code written in line 2 and below (with at least a single
indent) will be inside of this class.

1. class StudentOrganiser(TK):
2.
3. interface = StudentOrganiser()
4. interface.mainloop()

Before I added anything to this class, I had started to import some modules that I’ll need for this to
work. As I am using tkinter, a GUI widget set for Python, I must import it. As well as tkinter, I
imported a few more modules. When adding text to the screen, I will be using different fonts and
sizes as a part of my design, therefore I’ll need the module, tkFont. tkMessageBox allows me to open
a pop up window to alert the user as well as ask the user any questions as part of this pop up. This
will be very useful for input validation later on, so I have imported it now as I plan to use this later on
in the program. Finally, sqlite3 is a module that I will use to manage a database. I will be using a
database to store all the tasks and the information about them and sqlite3 will do everything
necessary with a database for my program to function.

1. from Tkinter import *
2. import tkFont
3. import tkMessageBox
4. import sqlite3

Once I had created the class and imported some modules, I needed to add the function to initialize
the whole GUI environment, the window that the use will eventually interact with. There is a syntax
that should be followed for this to work correctly, which can be seen in lines 1 and 2. The purpose of
this function is to set the window up and declare all variables that will be used later.

Line 4 will set the title of the window to “Student Organiser.” This is the name of my project and is a
suitable name for the program to be. From lines 5 to 32, I imported 32 pictures that will be used as
icons for buttons. I have assigned each button a variable so that I can use this shorter name when
setting up buttons in the program.

1. def __init__(self):
2. Tk.__init__(self)
3.
4. self.title(" Student Organiser")
5. self.greenAdd = PhotoImage(file="buttons/green_add.gif")
6. self.blueAdd = PhotoImage(file="buttons/blue_add.gif")
7. self.yellowAdd = PhotoImage(file="buttons/yellow_add.gif")
8. self.redAdd = PhotoImage(file="buttons/red_add.gif")
9.
10. self.greenAdd = PhotoImage(file="buttons/green_up.gif")

Chester Lloyd Computer Science 51

11. self.blueAdd = PhotoImage(file="buttons/blue_up.gif")
12. self.yellowAdd = PhotoImage(file="buttons/yellow_up.gif")
13. self.redAdd = PhotoImage(file="buttons/red_up.gif")
14.
15. self.greenAdd = PhotoImage(file="buttons/green_down.gif")
16. self.blueAdd = PhotoImage(file="buttons/blue_down.gif")
17. self.yellowAdd = PhotoImage(file="buttons/yellow_down.gif")
18. self.redAdd = PhotoImage(file="buttons/red_down.gif")
19.
20. self.greenAdd = PhotoImage(file="buttons/green_done.gif")
21. self.blueAdd = PhotoImage(file="buttons/blue_done.gif")
22. self.yellowAdd = PhotoImage(file="buttons/yellow_done.gif")
23. self.redAdd = PhotoImage(file="buttons/red_done.gif")
24.
25. self.greenAdd = PhotoImage(file="buttons/green_delete.gif")
26. self.blueAdd = PhotoImage(file="buttons/blue_delete.gif")
27. self.yellowAdd = PhotoImage(file="buttons/yellow_delete.gif")
28. self.redAdd = PhotoImage(file="buttons/red_delete.gif")
29.
30. self.greenAdd = PhotoImage(file="buttons/green_remove.gif")
31. self.blueAdd = PhotoImage(file="buttons/blue_remove.gif")
32. self.yellowAdd = PhotoImage(file="buttons/yellow_remove.gif")
33. self.redAdd = PhotoImage(file="buttons/red_remove.gif")

I had created six different icons, each in 4 colours: green, blue, yellow and red. The four colours
were used to differentiate between selected tabs as I had planned for each tab to have a unique
colour. Whereby the overview tab would be green, homework would be blue, coursework is yellow
and exams are red. The buttons I had created all serve a unique purpose in the program. Their
purposes are to open the ‘add task’ page, to scroll up a page, to scroll down a page, to add a task, to
discard a task in the ‘add task’ page and to remove a task.

To create the buttons, I used Google’s Material Design. I used their icon pack as the main image
inside each icon. I chose these icons as they looked great and the whole set is open source. Another
reason was that they’re all very high quality. Once I had chosen each icon, I used Material Design
colours as the background colours of the icons. I applied the theme of the FAB button with a
coloured, circular design featuring a white central icon. I had decided to use Material Design colours
because they look really good and there are different pre-defined shades for each colour; making it
very easy for me to use different variations of each colour for the four different tabs.

The buttons that I had created:

Chester Lloyd Computer Science 52

After defining my button images, I then created variables for each tab that would state which page
was in view. This value will be a number where ‘0’ is the first page that loads, it may not contain any
tasks but the current page will always start at ‘0.’ If there were multiple pages, this value will change
higher or lower but I will explain the use of this variable later, for now, it is important that they are
set to ‘0’ when the program loads so that it will always show the first page for each tab. The
following are the variables that I created and set:

1. self.ovpage=0
2. self.hwpage=0
3. self.cwpage=0
4. self.expage=0

From my initial ideas, I will be creating a window that will be non-resizable. This is so that the
program will appear the same on every display. Additionally, a static program would be much easier
to create. A dynamically sizing program would be much harder for me as I am not using any scroll
bars. Due to this, the paging system would have to adapt and would take a lot of time for me to
achieve a functioning program.

The size for the canvas had been calculated. I set each tab to a width that all text for every tab would
fit comfortably inside. I then allowed for a fixed gap between each tab and finally a 30-pixel margin
between the inner left and right edge of the window boarders.

The code that sets the window to a fixed size and creates a canvas to suit is:

1. self.resizable(width=False, height=False)
2.
3. self.canvas = Canvas(self, width=575, height=380, bg="#FFFFFF")
4. self.canvas.pack()

As I will be using a database to store all of the data for every task, I will first need to create it.
However, I can’t go ahead and create this table every time that this program is used as it may
overwrite the older table or crash due to their already being a database with the same name.
Therefore, I have ensured that there will be a presence check to verify if a file called, ‘tasks.db’ is
present, else it will go ahead and create a new, empty table with the correct columns and data
formatting. The database will be created as follows:

Task ID Primary Key
Task Text
Subject Text
Date Date
Tab Text

1. databasePresent = os.path.isfile("./tasks.db")
2. if databasePresent == False:
3. conn = sqlite3.connect('tasks.db')
4. conn.execute('''CREATE TABLE TASKS
5. (ID INT PRIMARY KEY NOT NULL,
6. TASK TEXT NOT NULL,
7. SUBJECT TEXT NOT NULL,
8. DATE DATE NOT NULL,
9. TAB TEXT NOT NULL);''')
10. conn.close()

Chester Lloyd Computer Science 53

Menu Bar:
Once all of these instructions have completed, two functions will be called, the first is the menu bar
and the second is the overview page. The menu bar function will set up the menu bar and will load
for the entire program. Once loaded, there is no need to call it again. The menu bar is where I have
decided to store buttons that I thought should be able to be accessed anywhere in the program
without taking any space within the main body of the program’s window. The menu bar will have
three main buttons: file, help and sort. File will have basic shortcuts that can load the home page
(the overview page,) add a task and exit. The help option will contain options to view the help guide
and the about window for information about this software. Finally, the sort button will offer a list of
sorting filters that can rearrange the data into any of the set methods. These may be useful for the
user as they can quickly rearrange all of their tasks using a set rule and easily find tasks. The menu
bar function:

1. def menu_bar(self):
2. menu_bar = Menu(self)
3. afile = Menu(menu_bar, tearoff=0)
4. menu_bar.add_cascade(label="File", menu=afile)
5. afile.add_command(label="New Task", command=self.add_item)
6. afile.add_command(label="Home", command=self.setup_overview)
7. afile.add_separator()
8. afile.add_command(label="Exit", command=self.close)
9.
10. bhelp = Menu(menu_bar, tearoff=0)
11. menu_bar.add_cascade(label="Help", menu=bhelp)
12. bhelp.add_command(label="About", command=self.donothing)
13. bhelp.add_separator()
14. bhelp.add_command(label="Help", command=self.donothing)
15.
16. csort = Menu(menu_bar, tearoff=0)
17. menu_bar.add_cascade(label="Sort", menu=csort)
18. csort.add_command(label="Time: Soonest (Default)", command=self.sort_1)
19. csort.add_command(label="Time: Oldest", command=self.sort_2)
20. csort.add_command(label="Time: Task added", command=self.sort_7)
21. csort.add_separator()
22. csort.add_command(label="Task: A-Z", command=self.sort_3)
23. csort.add_command(label="Task: Z-A", command=self.sort_4)
24. csort.add_separator()
25. csort.add_command(label="Subject: A-Z", command=self.sort_5)
26. csort.add_command(label="Subject: Z-A", command=self.sort_6)
27.
28. self.config(menu=menu_bar)

Chester Lloyd Computer Science 54

Tab Selection:
Once the menu bar has loaded, the first page that the user can interact with will begin to load. The
function that is called is named, ‘setup_overview.’ For efficiency, I have used a system where the
selection of a tab will assign the ‘self.tab’ variable to the selected tab’s name. By doing so, I will not
have to write four large functions for controlling how each page loads; I can use a single variable and
use this value when handling the data for loading the correct results and colour theme. It also allows
me to split up my code and change the flow of the program easily. I have written these four
functions for when the respective tab had been selected by the user:

1. def setup_overview(self):
2. self.tab = "Overview"
3. self.setup_data()
4.
5. def setup_homework(self):
6. self.tab = "Homework"
7. self.setup_data()
8.
9. def setup_coursework(self):
10. self.tab = "Coursework"
11. self.setup_data()
12.
13. def setup_exams(self):
14. self.tab = "Exam"
15. self.setup_data()

When any of these tabs have been selected and the ‘self.tab’ variable had been assigned a name,
they all load the same function, ‘setup_data.’ This function has many purposes; it splits the database
to show only relevant tasks for the tab, it sets up the page to hold and show the tasks and loads the
correct theme. The first part of the function is assigning variables based on the selected tab. These
variables will be used throughout the function and also adds to my efficiency of code.

1. def setup_data(self):
2. if self.tab == "Overview":
3. self.colour = "#4caf50"
4. self.rowColour = "#c8e6c9"
5. self.add = self.greenAdd
6. self.delete = self.greenDelete
7. self.remove = self.greenRemove
8.
9. if self.tab == "Homework":
10. self.colour = "#4472C4"
11. self.rowColour = "#bbdefb"
12. self.add = self.blueAdd
13. self.delete = self.blueDelete
14. self.remove = self.blueRemove
15.
16. if self.tab == "Coursework":
17. self.colour = "#ff9800"
18. self.rowColour = "#ffe0b2"
19. self.add = self.yellowAdd
20. self.delete = self.yellowDelete
21. self.remove = self.yellowRemove
22.
23. if self.tab == "Exam":
24. self.colour = "#ff5722"
25. self.rowColour = "#ffcdd2"
26. self.add = self.redAdd
27. self.delete = self.redDelete
28. self.remove = self.redRemove

Chester Lloyd Computer Science 55

The first two variables in each function are used when loading the theme of the window. These are
two hexadecimal colours. I had chosen these colours from Google’s Material Design as they do look
very nice and there is a range of different colours. As well as this, each colour has a set of varying
shades, which is very useful as I can use the same shades of different colours to ensure a matching
theme. The first colour corresponds to the colour of the background colour behind the tabs; the
second controls the colour of the border for each row containing a task. The other three variables
control the colour of the buttons to use. As previously stated, I have created 32 buttons, which
include the four colours. Here, I am assigning the correct coloured button for the page and tab.

Chester Lloyd Computer Science 56

Page Setup:
Once the tab specific variables have been set, the canvas is cleared to ensure an empty window
before the title bar is created.

1. self.canvas.delete(ALL)
2. self.draw_title_bar()

The title bar function only adds five rectangles to the canvas. Each rectangle has a varying shade of
grey and aligned diagonally to one another. This forms a shadow effect, which will eventually
become the shadow to the tab background.

The order in which this had been created was important. The most recent widget to be placed on
the canvas will overlap any existing widget in any position where they meet. Therefore, the shadow
will be created first and then I will add in the correct tab colour. For this preview, I will use the
‘Overview’ tab as this will act as the home screen.

The code that adds this coloured rectangle on top:

1. self.canvas.create_rectangle(0, 40, 600, 0, fill=self.colour,
outline=self.colour)

The function, ‘self.draw_tabs’ is then called to add the four tabs across the top of the window.

1. def draw_tabs(self):
2. # TAB 1: Overview
3. self.canvas.create_rectangle(33, 45, 158, 59, fill="#e0e0e0",

outline="#e0e0e0")
4. self.canvas.create_rectangle(32, 44, 157, 58, fill="#ededed",

outline="#ededed")
5. self.canvas.create_rectangle(31, 20, 156, 57, fill="#f9f9f9",

outline="#f9f9f9")
6. self.canvas.create_rectangle(30, 20, 155, 56, fill="#FFFFFF",

outline="#FFFFFF")
7.
8. # TAB 2: Homework
9. self.canvas.create_rectangle(163, 45, 288, 59, fill="#e0e0e0",

outline="#e0e0e0")
10. self.canvas.create_rectangle(162, 44, 287, 58, fill="#ededed",

outline="#ededed")
11. self.canvas.create_rectangle(161, 20, 286, 57, fill="#f9f9f9",

outline="#f9f9f9")

Chester Lloyd Computer Science 57

12. self.canvas.create_rectangle(160, 20, 285, 56, fill="#FFFFFF",
outline="#FFFFFF")

13.
14. # TAB 3: Coursework
15. self.canvas.create_rectangle(293, 45, 418, 59, fill="#e0e0e0",

outline="#e0e0e0")
16. self.canvas.create_rectangle(292, 44, 417, 58, fill="#ededed",

outline="#ededed")
17. self.canvas.create_rectangle(291, 20, 416, 57, fill="#f9f9f9",

outline="#f9f9f9")
18. self.canvas.create_rectangle(290, 20, 415, 56, fill="#FFFFFF",

outline="#FFFFFF")
19.
20. # TAB 4: Exams
21. self.canvas.create_rectangle(423, 45, 548, 59, fill="#e0e0e0",

outline="#e0e0e0")
22. self.canvas.create_rectangle(422, 44, 547, 58, fill="#ededed",

outline="#ededed")
23. self.canvas.create_rectangle(421, 20, 546, 57, fill="#f9f9f9",

outline="#f9f9f9")
24. self.canvas.create_rectangle(420, 20, 545, 56, fill="#FFFFFF",

outline="#FFFFFF")
25.
26. # BUTTON 1: Overview
27. button_overview = Button(self, text="Overview", font=self.tab_font,

command=self.setup_overview, anchor = W)
28. button_overview.configure(border=0, relief=FLAT, fg="#4caf50",

activeforeground="#4caf50", bg="white", activebackground="white")
29. button_overview_window = self.canvas.create_window(46, 20, anchor=NW,

window=button_overview)
30.
31. # BUTTON 2: Homework
32. button_homework = Button(self, text="Homework", font=self.tab_font,

command=self.setup_homework, anchor = W)
33. button_homework.configure(border=0, relief=FLAT, fg="#4472C4",

activeforeground="#4472C4", bg="white", activebackground="white")
34. button_homework_window = self.canvas.create_window(173, 20, anchor=NW,

window=button_homework)
35.
36. # BUTTON 3: Coursework
37. button_coursework = Button(self, text="Coursework", font=self.tab_font,

command=self.setup_coursework, anchor = W)
38. button_coursework.configure(border=0, relief=FLAT, fg="#ff9800",

activeforeground="#ff9800", bg="white", activebackground="white")
39. button_coursework_window = self.canvas.create_window(298, 20, anchor=NW,

window=button_coursework)
40.
41. # BUTTON 4: Exams
42. button_exams = Button(self, text="Exams", font=self.tab_font,

command=self.setup_exams, anchor = W)
43. button_exams.configure(border=0, relief=FLAT, fg="#ff5722",

activeforeground="#ff5722", bg="white", activebackground="white")
44. button_exams_window = self.canvas.create_window(449, 20, anchor=NW,

window=button_exams)

The first half of this function sets up the background for each tab. It adds in 16 rectangles in total.
Out of these, 12 are grey rectangles, positioned to form a shadow effect behind each tab. They have
all been carefully positioned to ensure an even gap between each tab and the inner margins of the
main window.

Chester Lloyd Computer Science 58

Once the shadows are in place, white rectangles will be added on top. These white rectangles will
act as the background of the button. I chose white as it is a neutral colour but does not fade in with
the background of the title bar.

The second half of this function is responsible for adding in the buttons that will select the tab. I had
chosen to use buttons as I can easily adjust the size of the button (to fill the entire tab) and easily
add coloured text. The main reason is that it was a method of calling a function within my program,
which made this widget a necessity. Each button, created identically whereby only the position,
label, text colour and command change. The buttons will contain the name of the tab that they
represent, as well as the tab’s colour. When clicked, they all have different commands as they all
have different purposes, loading different pages.

When the tab bar has been set up, the button to add tasks is inserted. This button is to be positioned
in the lower right hand corner. I will leave a margin around this button so that it has an even space
between the window edges. For the user to add their tasks to the database, they will use this
button. The code to create this button:

1. button_add = Button(self, image=self.add, command=self.add_item, anchor = W)
2. button_add.configure(border=0, relief = FLAT)
3. button_add_window = self.canvas.create_window(510, 315, anchor=NW,

window=button_add)

The next widgets to add to the canvas is twelve entry boxes. These will be used to input the task
data so that they are presented clearly to the user. I initially planned to use text and place that on
the canvas. However, the problem with that solution was that, when aligning the text, the
coordinates would map the centre of the text. This will mean that, depending on the task name, the
tasks would all be out of line and would not look great. To fix this, I used entry boxes. I can still write

Chester Lloyd Computer Science 59

to the boxes so that the tasks will be shown to the user and every task can be aligned to the left. By
setting the width of each entry box and the position, I can create a table like structure.

I have adjusted the background colour of each entry box so that each entry box can be seen in the
documentation, however, in the code, there will be no boarder as per my design.

This image shows four rows with three columns. Each row will contain a task, where the first column
is the task name, the second will be the subject and the third should be the due date. The code that I
had written to achieve this:

1. # Row 1
2. self.name_1 = Entry(self,width=45)
3. self.name_1.configure(border=0, relief=FLAT, bg="white")
4. name_1_window = self.canvas.create_window(40, 97, anchor=NW, window=self.name_1)
5. self.subject_1 = Entry(self,width=20)
6. self.subject_1.configure(border=0, relief=FLAT, bg="white")
7. subject_1_window = self.canvas.create_window(320, 97, anchor=NW,

window=self.subject_1)
8. self.date_1 = Entry(self,width=15)
9. self.date_1.configure(border=0, relief=FLAT, bg="white")
10. date_1_window = self.canvas.create_window(450, 97, anchor=NW, window=self.date_1)
11.
12. # Row 2
13. self.name_2 = Entry(self,width=45)
14. self.name_2.configure(border=0, relief=FLAT, bg="white")
15. name_2_window = self.canvas.create_window(40, 157, anchor=NW, window=self.name_2)
16. self.subject_2 = Entry(self,width=20)
17. self.subject_2.configure(border=0, relief=FLAT, bg="white")
18. subject_2_window = self.canvas.create_window(320, 157, anchor=NW,

window=self.subject_2)

Chester Lloyd Computer Science 60

19. self.date_2 = Entry(self,width=15)
20. self.date_2.configure(border=0, relief=FLAT, bg="white")
21. date_2_window = self.canvas.create_window(450, 157, anchor=NW, window=self.date_2)
22.
23. # Row 3
24. self.name_3 = Entry(self,width=45)
25. self.name_3.configure(border=0, relief=FLAT, bg="white")
26. name_3_window = self.canvas.create_window(40, 217, anchor=NW, window=self.name_3)
27. self.subject_3 = Entry(self,width=20)
28. self.subject_3.configure(border=0, relief=FLAT, bg="white")
29. subject_3_window = self.canvas.create_window(320, 217, anchor=NW,

window=self.subject_3)
30. self.date_3 = Entry(self,width=15)
31. self.date_3.configure(border=0, relief=FLAT, bg="white")
32. date_3_window = self.canvas.create_window(450, 217, anchor=NW, window=self.date_3)
33.
34. # Row 4
35. self.name_4 = Entry(self,width=45)
36. self.name_4.configure(border=0, relief=FLAT, bg="white")
37. name_4_window = self.canvas.create_window(40, 277, anchor=NW, window=self.name_4)
38. self.subject_4 = Entry(self,width=20)
39. self.subject_4.configure(border=0, relief=FLAT, bg="white")
40. subject_4_window = self.canvas.create_window(320, 277, anchor=NW,

window=self.subject_4)
41. self.date_4 = Entry(self,width=15)
42. self.date_4.configure(border=0, relief=FLAT, bg="white")
43. date_4_window = self.canvas.create_window(450, 277, anchor=NW, window=self.date_4)

Once the entry boxes have been inserted. The contents of each one bust be removed. This is
because, when the next page loads (if there are multiple pages) this function will be called. When
adding the data, it would add the new task data to the last position in the entry box and therefore, it
will just add this to the current data. This is an undesirable outcome with a simple solution, clear the
contents of all entry boxes before they are used.

1. # Clear contents of every row
2. self.name_1.delete(0, END)
3. self.subject_1.delete(0, END)
4. self.date_1.delete(0, END)
5. self.name_2.delete(0, END)
6. self.subject_2.delete(0, END)
7. self.date_2.delete(0, END)
8. self.name_3.delete(0, END)
9. self.subject_3.delete(0, END)
10. self.date_3.delete(0, END)
11. self.name_4.delete(0, END)
12. self.subject_4.delete(0, END)
13. self.date_4.delete(0, END)

Chester Lloyd Computer Science 61

Database – Reading Tasks:
Now, there is an aligned grid of empty entry boxes ready to receive data. The next stage is to take all
of the data from the database and split it up into different arrays for use later on. I need to split the
data up into an array per task. Then each task will be added to a larger, two dimensional array of
every task. When creating the arrays, multiple steps occur to ensure that the data is converted into
the correct format that I had defined.

In the database, tasks are written as: ID, Name, Subject, Date YYYY/MM/DD, TAB
I will convert the tasks to the format: Name, Subject, Date DD/MM/YYYY, TAB, ID

To start, I open a connection to the database ‘tasks.db.’ Once a connection had been established, I
used a SQL query to select every task from the database for the current tab. For example, for the
overview page, every task is selected. However, for any of the other tasks, the selected tasks are
based on the values in the ‘TAB’ column.

To do this, I used the following code with the SQL statements:

1. conn = sqlite3.connect('tasks.db')
2. self.tasks = []
3. if self.tab == "Overview":
4. cursor = conn.execute("SELECT * FROM tasks ORDER BY DATE ASC")
5. else:
6. cursor = conn.execute("SELECT * FROM tasks WHERE TAB='"+str(self.tab)+"' ORDER

BY DATE ASC")

I have chosen to pre-sort these tasks. When each row in the database had been read from the
database, it is sorted by date ascending. I chose to have the data sorted in this way as it shows the
user immediately which tasks are due the soonest. With the tasks sorted in chronological order, they
are then split up to form the two-dimensional array.

1. for row in cursor:
2. single = []
3. single.append(row[1])
4. single.append(row[2])
5.
6. # Reverse the date format (YYYY/MM/DD => DD/MM/YYYY)
7. dateData = (row[3].strip().split('/'))
8. dateDay = dateData[2]
9. dateMonth = dateData[1]
10. dateYear = dateData[0]
11. dateNew = dateDay + "/" + dateMonth + "/" + dateYear
12.
13. single.append(dateNew)
14. single.append(row[4])
15. single.append(row[0])
16. self.tasks.append(single)
17. conn.close()

Chester Lloyd Computer Science 62

I chose to create a two-dimensional array because it would be very easy to handle the data later on
when splitting them into rows. First, I create an empty array called ‘single.’ This will contain the data
for a single task. The, for every task in the selected data, I perform the following process with the
data. The values for the task name and subject are appended to the ‘single’ array. Before adding the
date this this array, I will change the format in which it is written. For storing a date in a database
record, the format is as follows: YYYY/MM/DD. As the ‘single’ array contains the data that will be
presented to the user, it should be presented in the conventional format that the user would be
used to, DD/MM/YYYY.

To convert the date, I took the third item from the task, the date, and split the content up at every
‘/’. This will create a new array called, ‘dateData’ where the first item is the year, the second is the
month and the third is the day. The final step is to concatenate these values in the correct order
whilst adding in the ‘/’ where appropriate. This new date is added the array followed by the tab
name and the ID. When this has completed, the whole array is added to the tasks array and the
database connection is closed.

Chester Lloyd Computer Science 63

Page Sorting:
Once the tasks array has been created, the page system should be created. This will sort each task by
date soonest and allow a maximum of four tasks per page. Every task in the selected tab should
appear once in a sorted order.

To start, I calculated the number of tasks in the selected section. This number is then divided up to
find how many full pages of four that there will be. This will be a value that stores the number of
pages, the remainder will be any additional tasks left over. Each task in the data set will be split into
these sets where there will be four tasks per set and the remainder will match with any tasks not in a
full set. As there are now tasks stored within a set array, stored within a tasks array, I can use this to
output the correct data depending on the current page or tab.

The code that I wrote to create this sorting algorithm:

1. # Get number of tasks and create array of them
2. self.tasknumber = 0
3. for i in self.tasks:
4. self.tasknumber += 1
5.
6. # Get number of pages
7. self.setsremainder = self.tasknumber % 4
8. if self.tasknumber == 0:
9. self.sets = 0
10. elif self.tasknumber < 5:
11. self.sets = 1
12. elif self.setsremainder > 0:
13. self.sets = self.tasknumber // 4
14. self.sets += 1
15. elif self.setsremainder == 0:
16. self.sets = self.tasknumber // 4
17.
18. # Get sets of data
19. self.progress=[]
20. for i in range(self.sets):
21. self.mintask = (i) * 4
22. self.maxtask = self.mintask + 3
23. self.progress.append(self.mintask)
24. self.progress.append(self.maxtask)

Chester Lloyd Computer Science 64

Development Review:
At this point, the program has a functioning database capable of inserting data. The data that can be
stored includes: the task’s ID, name, subject, due date in the form, YYYY/MM/DD, and the task type.
Tasks stored in the database can be read from and ordered to form pages. This process involves
sorting the tasks by their due date, followed by splitting up the tasks in groups of four, where a
remainder can become a set where applicable.

Although none of the measurable success criteria have been met at this point, the program is able to
handle the main feature, storing and splitting tasks.

Chester Lloyd Computer Science 65

Load Rows:
Once the data has been split into the appropriate sets, I then created a function that will output this
data into the rows in the program. Following on from the tab selection, I used the same technique at
the start of the function. Depending on the selected tab, the page number (current page of the data
in the selected tab), the colour of the up and down button will all be set here.

1. def load_rows(self):
2. if self.tab == "Overview":
3. self.page = self.ovpage
4. self.up = self.greenUp
5. self.down = self.greenDown
6.
7. if self.tab == "Homework":
8. self.page = self.hwpage
9. self.up = self.blueUp
10. self.down = self.blueDown
11.
12. if self.tab == "Coursework":
13. self.page = self.cwpage
14. self.up = self.yellowUp
15. self.down = self.yellowDown
16.
17. if self.tab == "Exam":
18. self.page = self.expage
19. self.up = self.redUp
20. self.down = self.redDown

Once every tab specific variable has been assigned, I first set the button controller up. The buttons
should only work if they need to. As the role of the button is to adjust the page number and
progress, there can be crashes or ‘out of range’ errors if the user would advance too far and there
are not enough entries in the arrays to load. To fix this, I decided it would be a suitable idea to
disable any buttons that cannot be used.

The criteria that I set out for these buttons:

• If the current page is the first possible, disable the up button

• If the current page is the last possible, disable the down button

• If the user changes page at any point where the above situations have not been met, both
buttons should be enabled.

• If an enabled button has been clicked, adjust the page number accordingly.

I wrote this with a series of ‘if statements’ which check the page number and criteria:

1. # Change state of up/down buttons
2. if self.page == 0:
3. self.up_state = "disabled"
4. self.down_state = "active"
5. if self.page > 0:
6. self.up_state = "active"
7. self.down_state = "active"
8. if self.page == ((self.sets)*2)-2:
9. self.up_state = "normal"
10. self.down_state = "disabled"
11. if self.sets == 1:
12. self.up_state = "disabled"
13. self.down_state = "disabled"
14. if self.tasknumber == 0:
15. self.up_state = "disabled"
16. self.down_state = "disabled"

Chester Lloyd Computer Science 66

To prepare the window for inserting data, I will delete the content of every row before any data is
loaded into the rows. This will ensure that any new data entered into the entry boxes will be the
only data present. To delete every row, I just used the ‘delete()’ command for every row:

1. # Clear contents of every row
2. self.name_1.delete(0, END)
3. self.subject_1.delete(0, END)
4. self.date_1.delete(0, END)
5. self.name_2.delete(0, END)
6. self.subject_2.delete(0, END)
7. self.date_2.delete(0, END)
8. self.name_3.delete(0, END)
9. self.subject_3.delete(0, END)
10. self.date_3.delete(0, END)
11. self.name_4.delete(0, END)
12. self.subject_4.delete(0, END)
13. self.date_4.delete(0, END)

Before any data can be added, I add the up / down buttons. These will be the primary method for
the user to navigate through each page of tasks.

Chester Lloyd Computer Science 67

As there is currently no data in this database, both buttons are disabled and the rows are empty. As
before, I have filled the entry boxes in a grey colour to show their presence for the documentation.

1. # Add up/down buttons
2. button_up = Button(self, image=self.up, command=self.page_up, anchor = W)
3. button_up.configure(border=0, relief = FLAT, state=self.up_state)
4. button_up_window = self.canvas.create_window(30, 315, anchor=NW, window=button_up)
5.
6. button_down= Button(self, image=self.down, command=self.page_down, anchor = W)
7. button_down.configure(border=0, relief = FLAT, state=self.down_state)
8. button_down_window = self.canvas.create_window(80, 315, anchor=NW,

window=button_down)

I configured the foreground colour of every entry box to black. This means that the text that will be
inserted in to those will be black in font colour. This needed to be defined as the background colour
had been changed to white. The purpose of this was to hide them from view so only entry boxes
that contain a task will appear.

1. self.name_1.configure(fg="#000000")
2. self.subject_1.configure(fg="#000000")
3. self.date_1.configure(fg="#000000")
4. self.name_2.configure(fg="#000000")
5. self.subject_2.configure(fg="#000000")
6. self.date_2.configure(fg="#000000")
7. self.name_3.configure(fg="#000000")
8. self.subject_3.configure(fg="#000000")
9. self.date_3.configure(fg="#000000")
10. self.name_4.configure(fg="#000000")
11. self.subject_4.configure(fg="#000000")
12. self.date_4.configure(fg="#000000")

Now that the whole page has been set up, I wrote the code to start handling the data. I started by
defining the current date. This is very important as this will define whether a task is overdue. I can
use an ‘if statement’ to declare whether the due date is before the current date, if so, the task is
overdue and should be highlighted red, as per my specification.

The code to import the date:

1. todayDate = (time.strftime("%d/%m/%Y"))
2. currentDate = time.strptime(todayDate, "%d/%m/%Y")

To protect against crashes, I checked if the number of tasks is equal to zero. If so, the function
should ‘pass.’ This works as any arrays have not been operated on. As the arrays would be empty,
the program would attempt to import data and would receive an ‘out of range’ error.

1. if self.tasknumber == 0:
2. return

If this has passed, another decision is made. As it has been discovered that there is at least one item
in the array of tasks, the next decision is to check if the current page does not have all four tasks. I
chose to split this part up into four sections. Each will handle an increasing number of tasks. If there
is not a full set, then there will be a series of ‘if statements’ to determine how many rows are full.

Chester Lloyd Computer Science 68

Depending on how many rows are full, will decide how many rows will be handled. This was a
solution that I found to the problem where I would get ‘out of range’ errors when accessing data in
an array that isn’t there. It also allows me to create the correct number of row boxes to separate the
tasks.

If there are more than 0 rows full, but less than 4, the following two statements will return as true:

1. self.tasknumber<=self.progress[self.page+1]and
self.tasknumber>self.progress[self.page]

For example, a page with the following data will return False:
self.progress = [0, 3, 4, 7]
self.tasknumber = 5
self.page = 0

self.tasknumber <= self.progress[self.page+1] and self.tasknumber > self.progress[self.page]
5 <= 3 and 5 > 0
False and True
False

For example, a page with the following data will return True:
self.progress = [0, 3, 4, 7]
self.tasknumber = 5
self.page = 2

self.tasknumber <= self.progress[self.page+1] and self.tasknumber > self.progress[self.page]
5 <= 7 and 5 > 4
True and True
False

If the outcome is true, then there can be one, two or three tasks on the current page. The next stage
is to create the set of data needed to output into the entry boxes. The set will be created within a
certain range of tasks.

1. self.set=[]
2. for i in self.tasks[self.progress[self.page]:self.tasknumber]:
3. self.set.append(i)
4.
5. self.fullRows = self.tasknumber - self.progress[self.page]

This works by using the progress array that I created earlier. It uses the current page to determine
the range of tasks to load from the tasks array and adds them into the set array. To narrow down the
exact the number of full rows, I subtracted the current progress value from the total number of
tasks. As this part of the program, will load after all full sets in this tab, if any, have loaded; this will
always work and give the correct number of full rows on the last page, if there are not four.

Using the number of full rows, I am able to add design to the page. I will use a rectangle design
around each task to clearly show each individual task. This is how the page will look if there is a full
set of tasks.

Chester Lloyd Computer Science 69

The code below will be used if there is only a single full row:

1. if self.fullRows == 1:
2. row1 = []
3. for i in self.set[0]:
4. row1.append(i)
5. self.name_1.insert(INSERT, row1[0])
6. self.subject_1.insert(INSERT, row1[1])
7. self.date_1.insert(INSERT, row1[2])
8.
9. taskDate_1 = time.strptime(row1[2], "%d/%m/%Y")
10. taskOverdue_1 = currentDate > taskDate_1
11.
12. if taskOverdue_1 == True:
13. self.name_1.configure(fg="#f44336")
14. self.subject_1.configure(fg="#f44336")
15. self.date_1.configure(fg="#f44336")
16.
17. button_remove_1 = Button(self, image=self.remove, command=self.delete_row_1,

anchor=W)
18. button_remove_1.configure(border=0, relief = FLAT)
19. button_remove_1_window = self.canvas.create_window(520, 94, anchor=NW,

window=button_remove_1, tags="rowBox")
20. return

Chester Lloyd Computer Science 70

If there is only one task to be displayed on this page, then an empty array called ‘row1’ will be
created. The data needed for the first row will be stored in here. For every item in the set, the row
array is appended with this item, leaving row1 with every detail about the first task in the set.

This data is then inserted into the appropriate entry boxes where the task name is inserted into the
first entry box on the first row, the subject is inserted into the second and the due date is inserted
into the last entry box on that row. At this stage, all the information relevant to the user has been
outputted to the user in these entry boxes. There is no need to output the ID or the tab name as
these values are only used by the program during sorting or choosing the data to present.

To highlight any tasks that are overdue in red, it checks if the current date is greater than the due
date. If true, the foreground colour of every entry box for this row will become red; making the text
inside that entry box become red.

The final part to this statement is to add the delete button. I have added an individual delete button
per row which allows the user to delete that row of data. This will remove the task from the
database, load every row again and, if necessary, change the current page backwards if there are no
tasks on this page. If, however, this is the first page, the page count will remain at 0 and no data will
be shown.

If I were to add, Revise topic 1.1.1, for Computing as a homework task, it would appear:

Chester Lloyd Computer Science 71

The above code is repeated for differing amount of rows available. Some code is copied but slightly
changed every time to accommodate for an increasing number of rows. The below code works for
two rows:

1. if self.fullRows == 2:
2. row1 = []
3. for i in self.set[0]:
4. row1.append(i)
5. row2 = []
6. for i in self.set[1]:
7. row2.append(i)
8. self.name_1.insert(INSERT, row1[0])
9. self.subject_1.insert(INSERT, row1[1])
10. self.date_1.insert(INSERT, row1[2])
11. self.name_2.insert(INSERT, row2[0])
12. self.subject_2.insert(INSERT, row2[1])
13. self.date_2.insert(INSERT, row2[2])
14.
15. taskDate_1 = time.strptime(row1[2], "%d/%m/%Y")
16. taskOverdue_1 = currentDate > taskDate_1
17. taskDate_2 = time.strptime(row2[2], "%d/%m/%Y")
18. taskOverdue_2 = currentDate > taskDate_2
19.
20. if taskOverdue_1 == True:
21. self.name_1.configure(fg="#f44336")
22. self.subject_1.configure(fg="#f44336")
23. self.date_1.configure(fg="#f44336")
24. if taskOverdue_2 == True:
25. self.name_2.configure(fg="#f44336")
26. self.subject_2.configure(fg="#f44336")
27. self.date_2.configure(fg="#f44336")
28.
29. button_remove_1 = Button(self, image=self.remove, command=self.delete_row_1,

anchor = W)
30. button_remove_1.configure(border=0, relief = FLAT)
31. button_remove_1_window = self.canvas.create_window(520, 94, anchor=NW,

window=button_remove_1, tags="rowBox")
32.
33. button_remove_2 = Button(self, image=self.remove, command=self.delete_row_2,

anchor = W)
34. button_remove_2.configure(border=0, relief = FLAT)
35. button_remove_2_window = self.canvas.create_window(520, 154, anchor=NW,

window=button_remove_2, tags="rowBox")
36. return

If I were to add ‘Revise topic 1.1.1’ as a homework task for computer science and ‘Use a semi colon’
as a homework task for English, it would appear:

Chester Lloyd Computer Science 72

Chester Lloyd Computer Science 73

The below code works for three rows:

1. if self.fullRows == 3:
2. row1 = []
3. for i in self.set[0]:
4. row1.append(i)
5. row2 = []
6. for i in self.set[1]:
7. row2.append(i)
8. row3 = []
9. for i in self.set[2]:
10. row3.append(i)
11. self.name_1.insert(INSERT, row1[0])
12. self.subject_1.insert(INSERT, row1[1])
13. self.date_1.insert(INSERT, row1[2])
14. self.name_2.insert(INSERT, row2[0])
15. self.subject_2.insert(INSERT, row2[1])
16. self.date_2.insert(INSERT, row2[2])
17. self.name_3.insert(INSERT, row3[0])
18. self.subject_3.insert(INSERT, row3[1])
19. self.date_3.insert(INSERT, row3[2])
20.
21. taskDate_1 = time.strptime(row1[2], "%d/%m/%Y")
22. taskOverdue_1 = currentDate > taskDate_1
23. taskDate_2 = time.strptime(row2[2], "%d/%m/%Y")
24. taskOverdue_2 = currentDate > taskDate_2
25. taskDate_3 = time.strptime(row3[2], "%d/%m/%Y")
26. taskOverdue_3 = currentDate > taskDate_3
27.
28. if taskOverdue_1 == True:
29. self.name_1.configure(fg="#f44336")
30. self.subject_1.configure(fg="#f44336")
31. self.date_1.configure(fg="#f44336")
32. if taskOverdue_2 == True:
33. self.name_2.configure(fg="#f44336")
34. self.subject_2.configure(fg="#f44336")
35. self.date_2.configure(fg="#f44336")
36. if taskOverdue_3 == True:
37. self.name_3.configure(fg="#f44336")
38. self.subject_3.configure(fg="#f44336")
39. self.date_3.configure(fg="#f44336")
40.
41. button_remove_1 = Button(self, image=self.remove, command=self.delete_row_1,

anchor = W)
42. button_remove_1.configure(border=0, relief = FLAT)
43. button_remove_1_window = self.canvas.create_window(520, 94, anchor=NW,

window=button_remove_1, tags="rowBox")
44.
45. button_remove_2 = Button(self, image=self.remove, command=self.delete_row_2,

anchor = W)
46. button_remove_2.configure(border=0, relief = FLAT)
47. button_remove_2_window = self.canvas.create_window(520, 154, anchor=NW,

window=button_remove_2, tags="rowBox")
48.
49. button_remove_3 = Button(self, image=self.remove, command=self.delete_row_3,

anchor = W)
50. button_remove_3.configure(border=0, relief = FLAT)
51. button_remove_3_window = self.canvas.create_window(520, 214, anchor=NW,

window=button_remove_3, tags="rowBox")
52. return

If I were to add ‘Revise topic 1.1.1’ as a homework task for computer science, ‘use a semi Colon’ as a
homework task for English and ‘complete stakeholder documentation’ for computer science as a
coursework task, it would appear:

Chester Lloyd Computer Science 74

The below code works for a full set of rows:

1. if self.fullRows == 3:
2. else:
3. self.set=[]
4. for i in self.tasks[self.progress[self.page]:self.progress[self.page+1]+1]:
5. self.set.append(i)
6.
7. # Insert rows
8. self.t = 80
9. self.b = 130
10. for i in range(4):
11. self.canvas.create_rectangle(30, self.b+2, 548, self.t+1, fill="#f9f9f9",

outline="#f9f9f9", tags="rowBox")
12. self.canvas.create_rectangle(30, self.b, 546, self.t, fill="white",

outline=self.rowColour, width=2, tags="rowBox")
13. self.t += 60
14. self.b += 60
15.
16. # Split previous array into 4 arrays (1 per row)
17. row1 = []
18. for i in self.set[0]:
19. row1.append(i)
20. row2 = []
21. for i in self.set[1]:
22. row2.append(i)
23. row3 = []
24. for i in self.set[2]:
25. row3.append(i)
26. row4 = []

Chester Lloyd Computer Science 75

27. for i in self.set[3]:
28. row4.append(i)
29.
30. self.name_1.insert(INSERT, row1[0])
31. self.subject_1.insert(INSERT, row1[1])
32. self.date_1.insert(INSERT, row1[2])
33. self.name_2.insert(INSERT, row2[0])
34. self.subject_2.insert(INSERT, row2[1])
35. self.date_2.insert(INSERT, row2[2])
36. self.name_3.insert(INSERT, row3[0])
37. self.subject_3.insert(INSERT, row3[1])
38. self.date_3.insert(INSERT, row3[2])
39. self.name_4.insert(INSERT, row4[0])
40. self.subject_4.insert(INSERT, row4[1])
41. self.date_4.insert(INSERT, row4[2])
42.
43. taskDate_1 = time.strptime(row1[2], "%d/%m/%Y")
44. taskOverdue_1 = currentDate > taskDate_1
45. taskDate_2 = time.strptime(row2[2], "%d/%m/%Y")
46. taskOverdue_2 = currentDate > taskDate_2
47. taskDate_3 = time.strptime(row3[2], "%d/%m/%Y")
48. taskOverdue_3 = currentDate > taskDate_3
49. taskDate_4 = time.strptime(row4[2], "%d/%m/%Y")
50. taskOverdue_4 = currentDate > taskDate_4
51.
52. if taskOverdue_1 == True:
53. self.name_1.configure(fg="#f44336")
54. self.subject_1.configure(fg="#f44336")
55. self.date_1.configure(fg="#f44336")
56. if taskOverdue_2 == True:
57. self.name_2.configure(fg="#f44336")
58. self.subject_2.configure(fg="#f44336")
59. self.date_2.configure(fg="#f44336")
60. if taskOverdue_3 == True:
61. self.name_3.configure(fg="#f44336")
62. self.subject_3.configure(fg="#f44336")
63. self.date_3.configure(fg="#f44336")
64. if taskOverdue_4 == True:
65. self.name_4.configure(fg="#f44336")
66. self.subject_4.configure(fg="#f44336")
67. self.date_4.configure(fg="#f44336")
68.
69. button_remove_1 = Button(self, image=self.remove, command=self.delete_row_1,

anchor = W)
70. button_remove_1.configure(border=0, relief = FLAT)
71. button_remove_1_window = self.canvas.create_window(520, 94, anchor=NW,

window=button_remove_1, tags="rowBox")
72.
73. button_remove_2 = Button(self, image=self.remove, command=self.delete_row_2,

anchor = W)
74. button_remove_2.configure(border=0, relief = FLAT)
75. button_remove_2_window = self.canvas.create_window(520, 154, anchor=NW,

window=button_remove_2, tags="rowBox")
76.
77. button_remove_3 = Button(self, image=self.remove, command=self.delete_row_3,

anchor = W)
78. button_remove_3.configure(border=0, relief = FLAT)
79. button_remove_3_window = self.canvas.create_window(520, 214, anchor=NW,

window=button_remove_3, tags="rowBox")
80.
81. button_remove_4 = Button(self, image=self.remove, command=self.delete_row_4,

anchor = W)
82. button_remove_4.configure(border=0, relief = FLAT)
83. button_remove_4_window = self.canvas.create_window(520, 274, anchor=NW,

window=button_remove_4, tags="rowBox")

Chester Lloyd Computer Science 76

Below is an example when all four rows have been filled:

Chester Lloyd Computer Science 77

Page Up:
The next function will be called every time the up arrow is clicked. The function will control the
scrolling of the pages in the backward direction. When the user wants to scroll to a previous page,
this button will be used. I have written in safeguards so that the user cannot scroll too far ahead or
too far before the first and last pages. The code that controls this button:

1. def page_up(self):
2. # Previous page
3. if self.tab == "Overview":
4. self.ovpage -= 2
5. elif self.tab == "Homework":
6. self.hwpage -= 2
7. elif self.tab == "Coursework":
8. self.cwpage -= 2
9. elif self.tab == "Exam":
10. self.expage -= 2
11. self.canvas.delete("rowBox")

12. self.load_rows()

I used ‘if statements’ and ‘elif statements’ to alter the path of this function depending on the current
page. This allowed me to use a single function to control the same button across different pages,
saving time and increasing efficiency. I chose to use ‘elif statements’ because the program will only
select one of these if the outcome is true, else, it will check the other up until the correct paths has
been selected. When the correct tab has been identified, it will remove two from the tab’s page
count. The reason I selected two was that this number is used in conjunction with my progress array
to determine the tasks to load.

The progress array contains values in pairs, e.g. [0,3,4,7,8,11] If the page number was 2, it will load
the fourth to the seventh tasks in the array. If the user clicks the up arrow, the page number will
become two less than before to make zero. Now, the first to the third tasks will be selected to load.
When this has variable has changed, every widget on the canvas with the ID ‘rowBox’ will be
deleted. I created a select set of widgets using this ID so that they all con be removed easily. These
are the rectangular outlines around each task. These will all be removed so that the correct amount
can be added on the load of the next page; leaving the next set of tasks with the appropriate
amount of boxes. Finally, the ‘load_rows’ function is called and the page is set up with every task on
the previous page.

Chester Lloyd Computer Science 78

Page Down:
This function will be called every time the down arrow is clicked. The function will control the
scrolling of the pages in the forward direction. When the user wants to scroll to a next page, this
button will be used. The button is very similar to page up function. The code that controls this
button:

1. def page_down(self):
2. # Next page
3. if self.tab == "Overview":
4. self.ovpage += 2
5. elif self.tab == "Homework":
6. self.hwpage += 2
7. elif self.tab == "Coursework":
8. self.cwpage += 2
9. elif self.tab == "Exam":
10. self.expage += 2
11. self.canvas.delete("rowBox")

12. self.load_rows()

Similarly, to the page up function, the correct tab is identified and the appropriate page value is
increased by two. Once this has completed, every row box is deleted and the function, ‘load_rows’ is
called, placing every task for the next page into the correct entry boxes.

Chester Lloyd Computer Science 79

Development Review:
Tasks can now be displayed. This can handle outputting tasks where the page contains one, two,
three or a full set of four tasks. Each piece of task data that is essential to the task is presented to
the user in a logical, organised structure. The types of data appear in columns whilst the tasks
appear in rows. A table design has been created.

Page buttons have been included to scroll between and sets of tasks that have been created. IF
there is only one set in the tab, these buttons will be disabled. If there are multiple, they will be
enabled if the direction is available. This supports the criteria that, the software must be presented
clearly so that it is easy to use. The user cannot scroll out of the range of pages available.

As tasks are loaded, any task with a date which is before the current date will be written in red text.
This was involved with this sprint as it is very closely linked with the loading of the tasks.

I then tested that tasks loaded correctly with sample data that I had written to the database file. I
verified that the solution would work with one task, up to and including a full set. In the first test,
where I only had a single task, I set the date to before the current and it loaded in red text, showing
that this feature had worked.

As all code written at this point functions, I will continue to the next iteration.

Chester Lloyd Computer Science 80

Add Task:
One of the most important functions of this program is the ability to add tasks to the database. This
will be a separate function called when the ‘add’ button has been clicked. This function will clear the
canvas and add new widgets. I will have two rectangular boxes that will house two parts of data
inputs. In total, I will add two entry boxes on the left, one for task name and the other for the
subject. In the right box, I will have three dropdown menus. These will be used for the date, where
the first contains the numbers 1 to 31 for the day, the second will contain all twelve months and the
third will have five years to select. The years will be chosen by selecting the current year and
allowing the next four years in succession to be available. The overview page is slightly different
where I add another dropdown menu to select the type of tasks. I chose to do this, as this function
will be used when any tab is selected. If a tab that is not the overview tab is selected, the type that
the task is saved as is the tab name.

This function starts by assigning the variables for the colours for the theme and the done and delete
buttons. These will be the two buttons that will replace the up/down page controls and the add
button.

1. def add_item(self):
2. if self.tab == "Overview":
3. self.colour = "#4caf50"
4. self.done = self.greenDone
5. self.delete = self.greenDelete
6. if self.tab == "Homework":
7. self.colour = "#4472C4"
8. self.done = self.blueDone
9. self.delete = self.blueDelete
10. if self.tab == "Coursework":
11. self.colour = "#ff9800"
12. self.done = self.yellowDone
13. self.delete = self.yellowDelete
14. if self.tab == "Exam":
15. self.colour = "#ff5722"
16. self.done = self.redDone
17. self.delete = self.redDelete

Once these have been assigned, the canvas is cleared. The title bar and other widgets that make up
the theme are added into this canvas in lines 2, 3 and 4. Then the two main buttons are added. The
first will be placed in the same position as the page up button. This button will be the delete button
that will delete any progress in this page and return the user to the tasks screen. The second is the
done button and will be positioned where the add button would be. The purpose of this button is to
submit the task details entered by the user. These details should be validated and then added into
the tasks database.

Chester Lloyd Computer Science 81

1. self.canvas.delete(ALL)
2. self.draw_title_bar()
3. self.canvas.create_rectangle(0, 40, 600, 0, fill=self.colour,

outline=self.colour)
4. self.draw_tabs()
5.
6. button_done = Button(self, image=self.done, command=self.check_add_name,

anchor=W)
7. button_done.configure(border=0, relief = FLAT)
8. button_done_window = self.canvas.create_window(502, 315, anchor=NW,

window=button_done)
9.
10. button_delete = Button(self, image=self.delete, command=self.return_rows,

anchor=W)
11. button_delete.configure(border=0, relief = FLAT)
12. button_delete_window = self.canvas.create_window(30, 315, anchor=NW,

window=button_delete)

At this stage, the add task page would appear:

The next part of this function is to load in the widgets that the user will interact with to create a task.
Here, the two grey rectangles that divide the two sets of inputs will be placed are drawn with the
appropriate coordinates. The box on the left will be titled, ‘Details’ as it will contain the two entry
boxes for the task name and subject. The box on the right has differing names depending on the
selected tab. If the overview tab is selected, the box will be titled, ‘Due Date & Type’ else if any other
tab is selected, it will become, ‘Due Date.’ This is because, as stated previously, the overview page
will show every task, therefore any task created under this tab could be for any of the three;
whereas the other three tabs should automatically assign the task being created to the selected tab
type.

Chester Lloyd Computer Science 82

1. self.canvas.create_rectangle(30, 300, 195, 90, fill="#eeeeee",
outline="#FFFFFF")

2. self.canvas.create_rectangle(212, 300, 544, 90, fill="#eeeeee",
outline="#FFFFFF")

3. self.canvas.create_rectangle(30, 131, 544, 130, fill="#FFFFFF",
outline="#FFFFFF")

4.
5. self.canvas.create_text(70, 111, text="Details", font=self.box_heading_font,

fill= "black")
6. if self.tab == "Overview":
7. self.canvas.create_text(287, 111, text="Due Date & Type",

font=self.box_heading_font, fill="black")
8. else:
9. self.canvas.create_text(260, 111, text="Due Date",

font=self.box_heading_font, fill="black")

With the two rectangles added:

Then the widgets are added in. Starting with the left hand box, the task name entry box is inserted
with a width of 24, which I chose as it fitted the best in the space given; the subject entry box is
equal width so that they match. I also added text to the canvas that labels each entry box, showing
the user what box is for. I have changed the font for these text widgets so that they are equal but
different to that of the headings of the rectangles. This shows that they are for a different purpose
and the size is much smaller and in bold to highlight their importance on the canvas.

Chester Lloyd Computer Science 83

1. self.canvas.create_text(60, 160, text="Name", font=self.box_content_font,
fill="black")

2. self.task_name = Entry(self,width=24)
3. self.task_name.configure(border=0, relief=FLAT, bg="#FFFFFF")
4. task_name_window = self.canvas.create_window(40, 175, anchor=NW,

window=self.task_name)
5.
6. self.canvas.create_text(65, 230, text="Subject", font=self.box_content_font,

fill="black")
7. self.task_subject = Entry(self,width=24)
8. self.task_subject.configure(border=0, relief=FLAT, bg="#FFFFFF")
9. task_subject_window = self.canvas.create_window(40, 245, anchor=NW,

window=self.task_subject)

With the two entry boxes:

For the right hand rectangle, this is where I add in the widgets to select the date and task type, if the
overview tab is selected. I used three entry boxes to select the due date. The first would contain
increasing numerical values from ‘1’ to ‘31’ to select the day, the second would contain every month
in ascending order and the final will have a choice of five years. I had decided to allow the user to
select the current year and the next four years after. This means that the program will allow the user
to select the current year and time this program is ever used and the next four years should be a
suitable range to plan any events.

Chester Lloyd Computer Science 84

Below these comboboxes, I have added a fourth combobox. This will be used to select the test type.
This will only be shown for the ‘overview’ tab as any task added here could be any of the three. AS
for the other tabs, it is assumed that the current tab determines the task type.

1. # Every number from 1 to 31 is assigned to the array called self.days
2. # A text label is created 'Day'
3. # A combobox is created with the contents of the self.days array
4. # The combobox is positioned on the canvas
5. self.days =

[1,2,3,4,5,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
,31]

6. self.canvas.create_text(232, 160, text="Day", font=self.box_content_font,
fill="black")

7. self.task_day = ttk.Combobox(self, values=self.days, state='readonly', width=5)
8. task_day_window = self.canvas.create_window(220, 175, anchor=NW,

window=self.task_day)
9.
10. # Every month from January to December is assigned to the array called

self.months
11. # A text label is created 'Month'
12. # A combobox is created with the contents of the self.months array
13. # The combobox is positioned on the canvas
14. self.months =

['January','February','March','April','May','June','July','August','September','Oct
ober','November','December']

15. self.canvas.create_text(314, 160, text="Month", font=self.box_content_font,
fill="black")

16. self.task_month = ttk.Combobox(self, values=self.months, state='readonly',
width=13)

17. task_month_window = self.canvas.create_window(295, 175, anchor=NW,
window=self.task_month)

18.
19. # The current year is assigned to self.year
20. # An empty array is created 'self.years'
21. # The current year and the next four years are added to the self.years array
22. self.year = (time.strftime("%Y"))
23. self.years=[]
24. self.years.append(int(self.year))
25. self.years.append(int(self.year) + 1)
26. self.years.append(int(self.year) + 2)
27. self.years.append(int(self.year) + 3)
28. self.years.append(int(self.year) + 4)
29.
30. # A text label is created 'Year'
31. # A combobox is created with the contents of the self.years array
32. # The combobox is positioned on the canvas
33. self.canvas.create_text(433, 160, text="Year", font=self.box_content_font,

fill="black")
34. self.task_year = ttk.Combobox(self, values=self.years, state='readonly',

width=7)
35. task_year_window = self.canvas.create_window(417, 175, anchor=NW,

window=self.task_year)
36.
37. # If the array tab is selected:
38. # A text label is created 'self.type'
39. # A combobox is created with the contents of the self.type array
40. # The combobox is positioned on the canvas
41. if self.tab == "Overview":
42. self.type = ['Homework','Coursework','Exam']
43. self.canvas.create_text(235, 230, text="Type", font=self.box_content_font,

fill="black")
44. self.task_type = ttk.Combobox(self, values=self.type, state='readonly',

width=13)
45. task_type_window = self.canvas.create_window(220, 245, anchor=NW,

window=self.task_type)

Chester Lloyd Computer Science 85

Here, I will test the two types of page where I will add in the task.

Test Test Data Expected Result Actual Result / Evidence

Add a task
when the
overview tab
is selected

N/A The program should show
the add task page with a
dropdown menu for the
three types.

Add a task
when the
homework
tab is
selected

N/A The program should show
the add task page without a
dropdown menu for the
three types. The task type
should be based on the
current tab, homework.

Add a task
when the
coursework
tab is
selected

N/A The program should show
the add task page without a
dropdown menu for the
three types. The task type
should be based on the
current tab, coursework.

Add a task
when the
exams tab is
selected

N/A The program should show
the add task page without a
dropdown menu for the
three types. The task type
should be based on the
current tab, exams.

Chester Lloyd Computer Science 86

Input Validation:
Once the user has entered data or clicked the ‘done’ button then the data must be validated. This
protect the program as it will not crash if an invalid input is used. In addition, it will ensure that the
data entered will be useful for the student and all necessary data is present and written to the
database correctly. In the case of an invalid entry, the program should open a dialogue box with the
relevant message detailing the issue found. I had chosen this method to alert the user of the issue so
that they can make the appropriate amendments and the user cannot attempt to use the program
whilst the message window is still open, making the alert very obvious.

The first check is to verify that the task name is present. If not, a dialogue message should appear
with the content, “Task name cannot be left blank” and no other changes to the program should
occur.

1. def check_add_name(self):
2. if self.task_name.get() == "":
3. messagebox.showinfo("Invalid Entry", "Task name cannot be left blank.")
4. pass
5. else:
6. self.check_add_subject()

Test Test Data Expected Result Actual Result / Evidence

Do not
enter
anything

 An error message appears with
the text, ‘Task name cannot be
left blank.’

Do not
enter a task
name

 An error message appears with
the text, ‘Task name cannot be
left blank.’

If this is present, the subject entry box is tested to confirm an input is existent. If not, a dialogue
message should appear with the content, “Subject cannot be left blank” and no other changes to the
program should occur.

1. def check_add_subject(self):
2. if self.task_subject.get() == "":
3. messagebox.showinfo("Invalid Entry", "Subject cannot be left blank.")
4. pass
5. else:
6. self.check_add_date()

Test Test Data Expected Result Actual Result / Evidence

Do not
enter a
subject

name An error message appears with
the text, ‘Subject cannot be left
blank.’

Chester Lloyd Computer Science 87

If this is present, the date entry is tested to confirm that every combobox involved in selecting the
date has a value selected. If not, a dialogue message should appear with the content, “Day cannot
be left blank” or “Month cannot be left blank” or “Year cannot be left blank,” depending on the
combobox without a selection. I have chosen to create this validation in such a way that the user will
only be altered of one error at a time. This avoids numerous dialogue boxes from opening and
possibly annoying the user. If there were multiple mistakes’ they will still see every error that is
made as, when the first correction occurs, and the user selects the ‘done’ button, the next error will
be found and the user will be informed. The process will repeat each time and each time, it cycles
through every test.

1. def check_add_date(self):
2. if self.task_day.get() == "":
3. messagebox.showinfo("Invalid Entry", "Day cannot be left blank.")
4. pass
5. else:
6. if self.task_month.get() == "":
7. messagebox.showinfo("Invalid Entry", "Month cannot be left blank.")
8. pass
9. else:
10. if self.task_year.get() == "":
11. messagebox.showinfo("Invalid Entry", "Year cannot be left blank.")
12. pass
13. else:
14. self.check_add_valid_date()

Test Test Data Expected Result Actual Result / Evidence

Do not
select a day

Name
subject

An error message appears with
the text, ‘Day cannot be left
blank.’

Do not
select a
month

Name
Subject
1

An error message appears with
the text, ‘Month cannot be left
blank.’

Do not
select a
year

Name
Subject
1
January

An error message appears with
the text, ‘Year cannot be left
blank.’

No other changes to the program should occur. This is because the date entered must be validated.
As it is confirmed the date is present, it is now possible to check the authenticity of the input. This
will avoid any errors when writing to or reading from the database as the data type for this value is
date. If an invalid date is entered, errors will occur. To fix this, I used an algorithm that starts by
assigning every month a numerical value. Once this is complete, two arrays are created. The first
contains the numerical values of the months that can have a maximum of 30 days and the other will
contain the numerical values of the months that can have a maximum of 31 days. February is the
only month not be included in this, as it will depend on the year.

Two checks are performed; if the current day selected is greater than 30 and the month is in the
array defining the months with a maximum of 30 days, a dialogue message should appear with the
content, “<month> can only have up to 30 days” and no other changes to the program should occur.

Chester Lloyd Computer Science 88

1. def check_add_valid(self):
2. # Every month is assigned a numerical value
3. if self.task_month.get() == "January":
4. self.month_number = "01"
5. if self.task_month.get() == "February":
6. self.month_number = "02"
7. if self.task_month.get() == "March":
8. self.month_number = "03"
9. if self.task_month.get() == "April":
10. self.month_number = "04"
11. if self.task_month.get() == "May":
12. self.month_number = "05"
13. if self.task_month.get() == "June":
14. self.month_number = "06"
15. if self.task_month.get() == "July":
16. self.month_number = "07"
17. if self.task_month.get() == "August":
18. self.month_number = "08"
19. if self.task_month.get() == "September":
20. self.month_number = "09"
21. if self.task_month.get() == "October":
22. self.month_number = "10"
23. if self.task_month.get() == "November":
24. self.month_number = "11"
25. if self.task_month.get() == "December":
26. self.month_number = "12"
27.
28. # The maximum number of days for each month is determined
29. # 2 arrays are created
30. # The first contains every month that can have up to 30 days
31. # The second contains every month that can have up to 31 days
32. days_30 = ('4','6','9','11')
33. days_31 = ('1','3','5','7','8','10','12')
34. # If the user enters a day value greater than 30 for a 30 day month, a message

will be shown
35. # If the user enters a day value greater than 31 for a 31 day month, a message

will be shown
36. if self.month_number in days_30 and int(self.task_day.get()) > 30:
37. messagebox.showinfo("Invalid Entry", (str(self.task_month.get())+ " can

only have up to 30 days."))
38. pass
39. elif self.month_number in days_31 and self.task_day.get() > 31:
40. messagebox.showinfo("Invalid Entry", str(self.task_month.get())+str(" can

only have up to 31 days."))
41. pass
42. else:
43. self.check_leap_year()

Test Test Data Expected Result Actual Result / Evidence

Enter all
values with a
31 day for a
30 day month

31
April
2016

An error message appears
with the text, ‘April can only
have up to 30 days.’

Enter all
values with a
31 day less
than 31 for a
30 day month

31
April
2016

An error message appears
with the text, ‘April can only
have up to 30 days.’

Chester Lloyd Computer Science 89

If the correct day and month combination is selected, it then checks for leap years. This ensures that
February will have the correct day value too. A year is a leap year if it is divisible by four and can be
divided by 400, however, if it is divisible by 4 and divisible by 100, it is not a leap year. This works by
using the user’s input to the year combobox and performing the calculation of selected year mod 4.
If this value is equal to zero, then it is divisible by 4. Then the calculation, selected year mod 100 is
performed and if this equals zero, it is stated that the year is not a leap year. Else, the result of the
selected year mod 400 should be a zero, in which case, it is a leap year.

Using the result of the previous set of calculations, the day selected must be checked if the selected
month is February. If the month is February, it is a leap year and the selected day is greater than 29,
a dialogue message should appear with the content, “On a leap year, February can only have up to
29 days” and no other changes to the program should occur. If February has been chosen, it is not a
leap year and the selected day is greater than 28, a dialogue message should appear with the
content, “Not on a leap year, February can only have up to 28 days” and as before, no other changes
to the program should occur.

1. def check_leap_year(self):
2. # Check if the year selected is a leap year
3. # A variable 'leap_year' is created an is assigned as false
4. # If the selected year can be divided by 4, it is considered a leap year
5. # But, if the selected year can be divided by 100, it is no longer a leap year
6. # If the selected year can be divided by 400, it is a leap year
7. leap_year=False
8. if (int(self.task_year.get())%4) == 0:
9. leap_year=True
10. if (int(self.task_year.get())%100) == 0:
11. leap_year=False
12. elif (int(self.task_year.get())%400) == 0:
13. leap_year=True
14.
15. # If the user has selected February and a leap_year is true, the day cannot be

greater than 29
16. # If the user has selected February and a leap_year is false, the day cannot be

greater than 28
17. # If the day is valid, the write_task function is called
18. if self.month_number == 2 and leap_year and int(self.task_day.get()) > 29:
19. messagebox.showinfo("Invalid Entry", “On a leap year,

”+str(self.task_month.get())+(" can only have up to 29 days.")
20. pass
21. elif self.month_number == 2 and not leap_year and int(self.task_day.get()) >

28:
22. messagebox.showinfo("Invalid Entry", “Not on a leap year,

”+str(self.task_month.get())+" can only have up to 28 days.")
23. pass
24. else:
25. self.write_task()

Chester Lloyd Computer Science 90

Test Test Data Expected Result Actual Result / Evidence

Enter all
values with a
day greater
than 29 for
February on
a leap year

30
February
2016

An error message appears
with the text, ‘On a leap year,
February can only have up to
29 days.’

Enter all
values with a
day greater
than 28 for
February not
on a leap
year

31
February
2017

An error message appears
with the text, ‘Not on a leap
year, February can only have
up to 28 days.’

Chester Lloyd Computer Science 91

Writing to Database:
Once all data has been validated, it must be written to the tasks table in the database. Each record in
this table will contain a task. To ensure that the data is in the correct format for creating a record,
any day values that are single digits must become double, therefore adding a zero to the beginning
would solve this. The data is converted into the correct format of YYYY/MM/DD as this is how the
databases stores the date. A date variable is constructed by concatenating the three variables in this
order.

1. self.date = str(self.task_year.get()) + "/" + str(self.month_number) + "/" +
str(self.day_number)

Before a connection to the database is established, another validation takes place. If the overview
tab had been selected, the program will check if a task type had been selected. This ensures that the
task is written to the correct tab.

1. # Check if type has been selected
2. if self.tab == "Overview":
3. if self.task_type.get() == "":
4. tkMessageBox.showinfo("Invalid Entry", "Type cannot be left blank.")
5. return

Test Test Data Expected Result Actual Result / Evidence

Enter all
values
without tab
selected

N/A An error message appears
with the text, ‘Type cannot
be left blank.’

Now, the data must be written to the database. To start, a connection to the database is established,
and the ID of the last record in the database is found. This is important as it will be used when
inserting a new record. With this value, a validation process occurs. If the value of the last row is
null, the variable is assigned zero, as this will be the first record in the table to add.

Depending on the tab selected, decides how the task is written. If the overview tab is selected, the
tab selected in the dropdown menu is used, if another tab is selected before adding the task, that
value is assigned.

1. # A connection to the database is established
2. conn = sqlite3.connect('tasks.db')
3. # The ID of the last record in the table is found
4. # If this value doesn't exist, it is assigned '0'
5. lastRow = conn.execute("SELECT MAX(id) FROM TASKS")
6. for row in lastRow:
7. self.id = row[0]
8. if self.id == None:
9. self.id = 0
10. if self.tab == "Overview":
11. conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB) values (?, ?, ?,

?, ?)", (self.id+1, self.task_name.get(), self.task_subject.get(), self.date,
self.task_type.get()))

12. else:
13. conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB) values (?, ?, ?,

?, ?)", (self.id+1, self.task_name.get(), self.task_subject.get(), self.date,
self.tab))

14. conn.commit()
15. conn.close()

Chester Lloyd Computer Science 92

Once the user had entered all the valid information needed and then clicks the done button, the
program needs to show the tasks page. For example, when adding a task on the homework page,
the homework tasks page should load.

1. # The program will show the relevant tasks page once added
2. if self.tab == "Overview":
3. self.setup_overview()
4. if self.tab == "Homework":
5. self.setup_homework()
6. if self.tab == "Coursework":
7. self.setup_coursework()
8. if self.tab == "Exam":
9. self.setup_exams()

Test Test Data Expected Result Actual Result / Evidence

Enter all
values when
adding a task
for the
overview tab

Task 1
Subject A
11/12/2016
Homework

The program should show
every task on a page with the
new task added in.

Enter all
values when
adding a task
for the
homework
tab

Task 2
Subject B
26/12/2016
Homework

The program should show
the page for homework tasks
with the new task added in.

Enter all
values when
adding a task
for the
coursework
tab

Task 3
Subject C
13/02/2016
Coursework

The program should show
the page for coursework
tasks with the new task
added in.

Enter all
values when
adding a task
for the exams
tab

Task 4
Subject D
08/08/2017
Exams

The program should show
the page for exam tasks with
the new task added in.

Chester Lloyd Computer Science 93

Cancel Adding a Task:
If the user does not want to create the task, they can click the bin icon to clear the fields and return
to the previous page. This allows the user to quickly delete the task and return to where they left off.
I had written a small function to control this process. If the user clicks this button, a message box will
appear with the message, “Are you sure you want to delete this task?” There will be two buttons,
‘Yes’ and ‘No’. If the user opts for the affirmative, then the tasks page will load with the relevant tab
selected. Else, the message window will close and the data entered will remain unaltered.

1. def return_rows(self):
2. if messagebox.askyesno("Delete Task", "Are you sure you want to delete this

task?"):
3. if self.tab == "Overview":
4. self.setup_overview()
5. if self.tab == "Homework":
6. self.setup_homework()
7. if self.tab == "Coursework":
8. self.setup_coursework()
9. if self.tab == "Exam":
10. self.setup_exams()
11. else:
12. pass

Test Test Data Expected Result Actual Result / Evidence

Enter all
values
when
adding a
task and
click the
delete
button

Task 5
Subject E
28/10/2016
Exams

A message appears with the
options, ‘Yes’, ‘No’ and the
text, ‘Type cannot be left
blank.’

Enter all
values
when
adding a
task for the
homework
tab

Task 2
Subject B
26/12/2016
Homework

The program should show
the page for homework tasks
with the new task added in.

Chester Lloyd Computer Science 94

Client Meeting:
This is the first meeting with the client. My client had said that they would like to have the test type
dropdown menu to appear in every add task page regardless of the current tab. The value in this list
should automatically be select for the current tab. If the overview tab is selected, no values should
be pre-selected.

Adjustments:
I changed a few parts of the code so that the clients brief would be met. The first change was to
always display the title, “Due Date & Type” on every page where the task is added, regardless on the
selected tab.

The code before:

1. if self.tab == "Overview":
2. self.canvas.create_text(287, 111, text="Due Date & Type",

font=self.box_heading_font, fill="black")
3. else:
4. self.canvas.create_text(260, 111, text="Due Date", font=self.box_heading_font,

fill="black")

The code after:

1. self.canvas.create_text(287, 111, text="Due Date & Type",
font=self.box_heading_font, fill="black")

This will now always display the revised title for every page. The next change was to adjust the
default selected values when the combobox is inserted into the page. This is where the value in the
list will be selected based on the selected tab.

The code before:

1. # If the overview tab is selected, a dropdown menu of task types will be displayed.
2. self.type = ['Homework','Coursework','Exam']
3. if self.tab == "Overview":
4. self.type = ['Homework','Coursework','Exam']
5. self.canvas.create_text(235, 230, text="Type", font=self.box_content_font,

fill="black")
6. self.task_type = ttk.Combobox(self, values=self.type, state='readonly',

width=13)
7. task_type_window = self.canvas.create_window(220, 245, anchor=NW,

window=self.task_type)

The code after:

8. # The dropdown menu will select the value for the current tab by default
9. # If the overview tab is selected, no values are automatically selected.
10. self.type = ['Homework','Coursework','Exam']
11. self.canvas.create_text(235, 230, text="Type", font=self.box_content_font,

fill="black")
12. self.task_type = ttk.Combobox(self, values=self.type, state='readonly', width=13)
13. if self.tab == "Homework":
14. self.task_type.set('Homework')
15. elif self.tab == "Coursework":
16. self.task_type.set('Coursework')
17. elif self.tab == "Exam":
18. self.task_type.set('Exam')
19. task_type_window = self.canvas.create_window(220, 245, anchor=NW,

window=self.task_type)

Chester Lloyd Computer Science 95

Testing of the Amendments:

Test Test Data Expected Result Actual Result / Evidence

Add a task
when the
overview tab
is selected

N/A The program should show
the add task page with a
dropdown menu for the
three types where there is
no value selected.

Add a task
when the
homework
tab is
selected

N/A The program should show
the add task page with a
dropdown menu for the
three types where
‘Homework’ is selected.

Add a task
when the
coursework
tab is
selected

N/A The program should show
the add task page with a
dropdown menu for the
three types where
‘Coursework’ is selected.

Add a task
when the
exams tab is
selected

N/A The program should show
the add task page with a
dropdown menu for the
three types where ‘Exams’ is
selected.

Chester Lloyd Computer Science 96

Development Review:
Tasks can now be entered by the user. The data in my previous review had been entered externally,
directly into the database table in order to test the output of the program. The task is added by
clicking the add button to load a page dedicated for this. This page offers a variety of input methods
where I have selected the most appropriate entry method for the data type requested. All entries
have been labelled for the easy to use success criteria and they have been split into two sections for
clarity.

At this stage in development, this version has implemented the following success criteria fully, an

option to load a page specifically to add a task.

Chester Lloyd Computer Science 97

Sorting:
Here I added in one of the main functions to the program, sorting. I asked the stakeholder which
sorting methods they would find most useful in this program. The result was that they would like to
be able to sort the tasks by time based on their due date and alphabetically for task name and the
subject. Each method should be able to sort in ascending and descending order.

From this, I created this set of sorting methods:

• Time: Soonest (Default)

• Time: Oldest

• Task: A-Z

• Task: Z-A

• Subject: A-Z

• Subject: Z-A

I have decided that all tasks will be sorted by their due date; therefore, I have included this as the
first sorting option with the ‘default’ label applied. I have grouped these options so that navigating
the sorting list would be simple and logical. The stakeholder has agreed that this satisfies their
requirements.

Time: Soonest
To sort by time soonest, I first connected to the database where the tasks are stored. Then an empty
tasks array is created. This is the same array as what is used when loading the tasks. If overview is
the selected tab, then it will select every task in the table and append them to the tasks array by the
date with the earliest at the top. Else, it will only select the tasks only for that tab and append those
to the array. Once this has completed, the array, ‘tasks’ will have the required tasks in the selected
order and to load these into the rows, the function, ‘self.refresh_task_list()’ loads.

1. def sort_1(self):
2. self.conn = sqlite3.connect('tasks.db')
3. self.tasks = []
4. if self.tab == "Overview":
5. self.cursor = self.conn.execute("SELECT * FROM tasks ORDER BY DATE ASC")
6. else:
7. self.cursor = self.conn.execute("SELECT * FROM tasks WHERE

TAB='"+str(self.tab)+"' ORDER BY DATE ASC")
8. self.refresh_task_list()

Time: Oldest
To sort by time oldest, I used the same function as sorting by tasks with the earliest time first. The
only change to reverse this order was within the SQL statement. I replaced ‘ASC’ with ‘DESC’ so that
the tasks would be appended to the tasks array in the reverse order.

1. def sort_2(self):
2. self.conn = sqlite3.connect('tasks.db')
3. self.tasks = []
4. if self.tab == "Overview":
5. self.cursor = self.conn.execute("SELECT * FROM tasks ORDER BY DATE DESC")
6. else:
7. self.cursor = self.conn.execute("SELECT * FROM tasks WHERE

TAB='"+str(self.tab)+"' ORDER BY DATE DESC")
8. self.refresh_task_list()

Chester Lloyd Computer Science 98

Task: A-Z
Another method of sorting the tasks is by the task name. As this is text, there are only two methods
that this can be sorted; alphabetically A to Z or Z to A. I used a similar SQL statement to the other
sorting methods where I changed the ‘order by’ parameter to ‘task’ which is the field containing the
task name.

1. def sort_3(self):
2. self.conn = sqlite3.connect('tasks.db')
3. self.tasks = []
4. if self.tab == "Overview":
5. self.cursor = self.conn.execute("SELECT * FROM tasks ORDER BY TASK ASC")
6. else:
7. self.cursor = self.conn.execute("SELECT * FROM tasks WHERE

TAB='"+str(self.tab)+"' ORDER BY TASK ASC")
8. self.refresh_task_list()

Task: Z-A
This is the opposite to the previous sorting method, with the exception that it will reverse the order
in which the tasks are added to the task array.

1. def sort_4(self):
2. self.conn = sqlite3.connect('tasks.db')
3. self.tasks = []
4. if self.tab == "Overview":
5. self.cursor = self.conn.execute("SELECT * FROM tasks ORDER BY TASK DESC")
6. else:
7. self.cursor = self.conn.execute("SELECT * FROM tasks WHERE

TAB='"+str(self.tab)+"' ORDER BY TASK DESC")
8. self.refresh_task_list()

Subject: A-Z
This follows the same concept as sorting the tasks alphabetically. This will sort the task’s subject in
alphabetical order.

9. def sort_5(self):
10. self.conn = sqlite3.connect('tasks.db')
11. self.tasks = []
12. if self.tab == "Overview":
13. self.cursor = self.conn.execute("SELECT * FROM tasks ORDER BY SUBJECT ASC")
14. else:
15. self.cursor = self.conn.execute("SELECT * FROM tasks WHERE

TAB='"+str(self.tab)+"' ORDER BY SUBJECT ASC")
16. self.refresh_task_list()

Subject: Z-A
This is the opposite to the previous sorting method, with the exception that it will reverse the order
in which the tasks are added to the task array.

9. def sort_4(self):
10. self.conn = sqlite3.connect('tasks.db')
11. self.tasks = []
12. if self.tab == "Overview":
13. self.cursor = self.conn.execute("SELECT * FROM tasks ORDER BY SUBJECT

DESC")
14. else:
15. self.cursor = self.conn.execute("SELECT * FROM tasks WHERE

TAB='"+str(self.tab)+"' ORDER BY SUBJECT DESC")
16. self.refresh_task_list()

Chester Lloyd Computer Science 99

Refreshing Task List:
At the end of every sort function, another function is called, ‘self.refresh_task_list().’ This will load
the records from the database in the order s0pecified within the sort function. Whilst accessing this
data, it will append each piece of data to the tasks array so that they can be loaded in to the correct
rows. As before, the data is reversed so that it is readable in the correct standard. Once the tasks
array has been created with the relevant data, the ‘load_rows’ function is called as this uses this
array to display the data.

1. def refresh_task_list(self):
2. for row in self.cursor:
3. single = []
4. single.append(row[1])
5. single.append(row[2])
6. # Reverse the date format (YYYY/MMM/DD => DD/MM/YYYY)
7. dateData = (row[3].strip().split('/'))
8. dateDay = dateData[2]
9. dateMonth = dateData[1]
10. dateYear = dateData[0]
11. dateNew = dateDay + "/" + dateMonth + "/" + dateYear
12. single.append(dateNew)
13. single.append(row[4])
14. single.append(row[0])
15. self.tasks.append(single)
16. self.conn.close()
17. self.load_rows()

Test Test Data Expected Result Actual Result / Evidence

Sort by task
soonest

N/A The program should show
every task on a page with the
task due soonest at the start.

Sort by task
oldest

N/A The program should show
every task on a page with the
task due soonest at the end.

Sort by task
a-z

N/A The program should show
every task on a page with the
tasks sorted alphabetically.

Chester Lloyd Computer Science 100

Sort by task
z-a

N/A The program should show
every task on a page with the
tasks sorted in reverse
alphabetical order.

Sort by
subject a-z

N/A The program should show
every task on a page with the
tasks sorted by their subject
alphabetically.

Sort by
subject z-a

N/A The program should show
every task on a page with the
tasks sorted by their subject
in reverse alphabetical order.

Chester Lloyd Computer Science 101

Client Meeting:
This is the second meeting with the client. My client has agreed that my sorting methods are very
useful but would like an additional one to be added. The client had stated that they would like to be
able to sort the tasks by the time in which they were added into the program. This should work by
ordering the tasks with the most recently added record appearing first and the first task added
should appear last.

Adjustments:
I added a new sorting method where the others have been written. I followed a similar structure to
the others too. This will be the order in which the user has added the task to the program. As I have
used an incrementing integer as the record ID for every task, I can sort the tasks by this value. By
doing so, the tasks will be inserted into the array where the first task will be the first added by the
user and the last will be the most resent task added in.

1. def sort_7(self):
2. self.conn = sqlite3.connect('tasks.db')
3. self.tasks = []
4. if self.tab == "Overview":
5. self.cursor = self.conn.execute("SELECT * FROM tasks ORDER BY ID ASC")
6. else:
7. self.cursor = self.conn.execute("SELECT * FROM tasks WHERE

TAB='"+str(self.tab)+"' ORDER BY ID ASC")
8. self.refresh_task_list()

 Testing of the Amendments:

Test Test Data Expected Result Actual Result / Evidence

Open the
program

N/A The program should show
every task on a page with the
task due soonest at the top.

Sort by task
added

N/A The program should show
every task on a page with the
tasks sorted with the first
inserted task appearing first.

The complete set of sorting methods becomes:

• Time: Soonest (Default)

• Time: Oldest

• Time: Task Added

• Task: A-Z

• Task: Z-A

• Subject: A-Z

• Subject: Z-A

Chester Lloyd Computer Science 102

Development Review:
This version has included the additional feature of sorting tasks. Originally, the program would sort
tasks by their due date, task and subject. I wrote the functions to reorder the tasks before they were
to be presented the user. This was mainly a slight variation of the SQL required to read the data
from the database. Once all sorting options were accessible in the user interface, I trialled them with
a sample of test data. Upon completion of these tests, I concluded that they all worked as expected.

To verify that these sorting methods were useful and if any adjustments were necessary, I met with
a client. After a meeting with a client, I have added an additional sorting option to load the tasks by
the time in which they were added. I developed this program further to meet their requirements
and as a result, there are now a total of seven task sorting methods available to the user.

Therefore, I can state that the requirement that the program should offer a sorting system has been
met to its fullest extent.

Chester Lloyd Computer Science 103

Delete Task:
Once tasks have been added, the user may want to remove them. To allow the user to delete
individual tasks, I added in a delete icon inside every row. This button will delete the tasks beside it
and refresh the rows to show the changes.

Each button is assigned a different function. These functions differ slightly depending on the row
that the user selects to delete. Each function works in a similar way, just the code selecting the data
to be deleted is different.

If the user deletes the first row, then the task ID is determined by the first item in the set array (the
record in row 1) and the fifth piece of data inside this record (the ID). When the ID has been
selected, I use a simple SQL statement to delete this task from the database. Once this task has been
deleted and there was only one task on that page, the page counter is reduced by ‘2’ for the relevant
tab. This ensures that the program will not show a blank page without any tasks showing. It will only
show the pages with tasks on, the previous page.

Then another function is called, inside this function is a list of instructions that will run one after
another. The idea of this would be to reduce repeated code by allowing just a single function to be
called per row deleted, rather than three instructions time. The first of the three will commit any
changes to the database, the task will be deleted ad saved. The connection to the database will be
closed as it is no longer needed. Finally, the ‘setup_data’ function is called to reload the tasks in the
program, ensuring that the deleted task will not show in the row.

1. def delete_row_1(self):
2. self.task_id = self.set[0][4]
3. self.conn = sqlite3.connect('tasks.db')
4. self.conn.execute("DELETE from TASKS where ID='"+ str(self.task_id)+"';")
5. if self.fullRows == 1:
6. if self.tab == "Overview":
7. self.ovpage -= 2
8. elif self.tab == "Homework":
9. self.hwpage -= 2
10. elif self.tab == "Coursework":
11. self.cwpage -= 2
12. elif self.tab == "Exam":
13. self.expage -= 2
14. self.refresh_task_list_remove()

For every other row, deleting the data is very similar, only the task ID is determined with the current
row in which it is positioned. There is also no need to reduce the page counter when deleting a task
which is in row two, three or four. This is because there will always be at least one remaining task on
the page once it has been removed.

1. def delete_row_2(self):
2. self.task_id = self.set[1][4]
3. self.conn = sqlite3.connect('tasks.db')
4. self.conn.execute("DELETE from TASKS where ID='"+ str(self.task_id)+"';")
5. self.refresh_task_list_remove()

1. def delete_row_3(self):
2. self.task_id = self.set[2][4]
3. self.conn = sqlite3.connect('tasks.db')
4. self.conn.execute("DELETE from TASKS where ID='"+ str(self.task_id)+"';")
5. self.refresh_task_list_remove()

Chester Lloyd Computer Science 104

1. def delete_row_4(self):
2. self.task_id = self.set[3][4]
3. self.conn = sqlite3.connect('tasks.db')
4. self.conn.execute("DELETE from TASKS where ID='"+ str(self.task_id)+"';")
5. self.refresh_task_list_remove()

Test Test Data Expected Result Actual Result / Evidence

Add six tasks N/A The program should show
every task on a page with the
task due soonest at the top.

Select the
second page

N/A The program should show
tasks 5 and 6 on a page.

Delete task 6 N/A The program should show

tasks 5 on a page.

Delete task 5 N/A The program should go to

the previous page and show
tasks 1,2,3 and 4.

Delete task 4 N/A The program should show

tasks 1,2 anfirstd 3 on a
page.

Chester Lloyd Computer Science 105

Delete task 3 N/A The program should show
tasks 1 and 2 on a page.

Delete task 2 N/A The program should show

tasks 1 on a page.

Delete task 1 N/A The program should show no

tasks on the page.

The error displayed in the final screenshot shows an issue caused when deleting the final task from
the program. The issue is caused when the program reduces the page count although there are no
tasks remaining. To fix this, I need to ensure that the page count will remain at ‘0’ when removing
the final task and a message should be shown that there are no tasks to be presented.

To fix this, I adjusted the function that deleted row 1 from the database. I added in an additional
embedded ‘if statement’ that would only reduce the page count if the current page number was
greater than ‘0’, else the page number will remain the same, ‘0’ and will pass.

Chester Lloyd Computer Science 106

1. def delete_row_1(self):
2. self.task_id = self.set[0][4]
3. self.conn = sqlite3.connect('tasks.db')
4. self.conn.execute("DELETE from TASKS where ID='"+ str(self.task_id)+"';")
5. if self.page > 0:
6. if self.fullRows == 1:
7. if self.tab == "Overview":
8. self.ovpage -= 2
9. elif self.tab == "Homework":
10. self.hwpage -= 2
11. elif self.tab == "Coursework":
12. self.cwpage -= 2
13. elif self.tab == "Exam":
14. self.expage -= 2
15. else:
16. pass
17. self.refresh_task_list_remove()

By doing so, the program will not adjust the page number, remove the task and call the function,
‘load_rows.’ Within this function, I adjusted a small piece of code that will run when the number of
tasks is equal to zero. If this is true, then a piece of text is inserted into the canvas stating, “No tasks
to display.” This shows the user that there are no tasks present in the program. I have added a tag to
this object, ‘noData’ as I can easily delete any widget with this task later on in the program.

1. if self.tasknumber == 0:
2. self.canvas.create_text(290, 210, text="No tasks to display", fill="black",

tags="noData")
3. return

I removed every widget with the tag of ‘noData’ when there was at least one task to display. By
doing so, the text informing the user that there are no tasks to display is therefore removed and the
data is loaded in.

1. # If a page isn't full, use this array
2. elif self.tasknumber<=self.progress[self.page+1] and

self.tasknumber>self.progress[self.page]:
3. self.canvas.delete("noData")

4. # If all pages are full, use this array
5. else:
6. self.canvas.delete("noData")

Chester Lloyd Computer Science 107

Testing of the Amendments:

Test Test Data Expected Result Actual Result / Evidence

Add two
tasks

N/A The program should show
every task on a page with the
task due soonest at the top.

Delete task 2 N/A The program should show

tasks 1 on a page.

Delete task 1 N/A The program should show no

tasks on the page with the
text, No tasks to display.”

Chester Lloyd Computer Science 108

Development Review:
The addition of code since the last version is the addition of the delete button. The aim of this sprint
was to target the requirement that tasks must be able to be deleted.

During this development, I had written functions to remove tasks from the database when a task ID
had been given. This function would be called by use of a button assigned to each visible task on
display.

Once the solution had been coded, I conducted a series of tests to ensure that the feature worked as
intended. However, I found an error occurred when deleting the final task from the page. I then
fixed this issue and repeated the tests with success.

Chester Lloyd Computer Science 109

Client Meeting:
This is the third meeting with the client. My client has suggested that I add a page numbering system
to the program. At the centre, in grey text, there should be a page numbering system which informs
the user which page of tasks that is currently loaded. The notation requested was, ‘Page x of y.’

Adjustments:
To position text on the canvas when a new page loads, I would need to place the necessary code
within the load_rows function. This function is called every time the page changes, whether it is to
another tab or scrolling up or down, making this an ideal position to insert the page counter.

Before I could insert the text, I would need to use some variables that I had previously used to
determine the page numbers. To get the current page that the user was currently viewing, I used the
self.page value. This value is used when loading the correct set of tasks into the rows on the pages.
This value is also twice the amount of the page that the user is currently on, therefore I performed a
DIV of this value. The total number of pages was calculated by using the self.sets variable. This is
used when sorting the tasks ready for displaying them in the rows. A set can contain up to four tasks.
Each task is split across into groups of up to four and each set is a separate page. Therefore, the total
number of sets can be considered the maximum number of pages available in any given tab.

To make up the text that will be presented to the user, I created a variable called ‘self.pageText’
which included, ‘Page ’ followed by the current page, then, ‘ of ’ followed by the maximum pages.

1. self.pageText="Page "+str((self.page//2)+1)+" of "+str(self.sets)

Once the text that will be displayed has been constructed into a single variable, I wrote some code
that will output this data onto the canvas with the client’s preferences. I positioned it in the center
of the screen at the bottom with the coordinates of 280,340. I had also altered the text colour top
grey too. The final addition that I included was the tags at the end.

1. self.canvas.create_text(280, 340, text=self.pageText, fill="grey", tags="page")

I chose to include the tag of “page” as I can easily delete all objects containing the tag of “Page” at
any point in this program. This is very important, as I will delete any objects with this tag at the start
of the load_pages function. This will ensure that the text displayed will always be the latest value.
This will remove the issue that the page number text will overlap each other every time the page is
changed, as the previous text is not removed from the canvas.

1. self.canvas.delete("page")

Chester Lloyd Computer Science 110

Testing of the Amendments:

Test Test Data Expected Result Actual Result / Evidence

Create a set
of 10 tasks (5
homework, 3
coursework
and 2 of
exam type)
and select
overview tab

N/A The program should show
every task on a page with the
text, ‘Page 1 of 3.’

Scroll down a
page

N/A The program should show
the second page of results
with the text, ‘Page 2 of 3.’

Scroll down a
page

N/A The program should show
the second page of results
with the text, ‘Page 3 of 3.’

Scroll up a
page

N/A The program should show
the second page of results
with the text, ‘Page 2 of 3.’

Select the
homework
tab

N/A The program should show
the homework tasks with the
text, ‘Page 1 of 2.’

Chester Lloyd Computer Science 111

Scroll down a
page

N/A The program should show
the second page of results
with the text, ‘Page 2 of 2.’

Select the
coursework
tab

N/A The program should show
the homework tasks with the
text, ‘Page 1 of 1.’

Select the
exams tab

N/A The program should show
the homework tasks with the
text, ‘Page 1 of 1.’

Select the
overview tab

N/A The program should show
the final 2 tasks on a page
with the text, ‘Page 3 of 3.’

Select the
overview tab
and delete 2
tasks

N/A The program should show
the tasks with the text, ‘Page
1 of 2.’

Delete a
further 4
tasks

N/A The program should show
the tasks with the text, ‘Page
1 of 1.’

Chester Lloyd Computer Science 112

Delete a
further 4
tasks

N/A The program should not
show a page counter.

As a result of this testing, I have found that the page numbering system is working as expected
where the correct number of pages is calculated. When the page or tab is changed, the page number
is calculated correctly. As well as this, if all tasks are removed from a page, the page is scrolled up
automatically to the tasks before and the page numbers are updated.

If there are no tasks available on a page, I planned for the page counter to not be displayed.
However, it shows, ‘Page 1 of 0.’ This is correct, however it should be removed as there are no pages
to load and the statement 1 of 0 is not logical. To fix this issue, I used the same code to delete every
object with the tag of ‘page’ in the same load_rows function within an ‘if statement.’ Where there
are no tasks, the, ‘No tasks to display’ message is presented to the user. I placed the code blow this
so that when there are no tasks, the page counter is deleted and the user should never see this.

1. # If there are no tasks to display:
2. # Show the text 'No tasks to display'
3. # Remove the page counter from the page
4. if self.tasknumber == 0:
5. self.canvas.delete("page")
6. self.canvas.create_text(290, 210, text="No tasks to display", fill="black",

tags="noData")
7. return

Testing of the Amendments:

Test Test Data Expected Result Actual Result / Evidence

Load a page
with zero
tasks.

N/A The program should show
the message, “No tasks to
display” and the page
counter should not be
present.

The outcome is now as expected meaning that the additional code has worked.

Chester Lloyd Computer Science 113

Modify Tasks:
The user is able to add in tasks and delete them but unable to modify any tasks currently written in
the program. I will now be writing in the code that will allow the user to modify existing tasks that
have been created in this program.

To start, I will need to collect the ID for each task that will be present on any given page. This is vital
information, as I will need to use this when removing the old tasks from the database. To do this, I
created an array for the task ID when each page is loaded. Another piece of data that I will need is
the task type as this will be used when writing the new task to the database. It is important that the
same task type is used. These arrays are created within the load_rows function.

If there is a single full row, the ID and task type is appended to two individual arrays respectively.

1. # Append the ID of every task on the page to an array
2. self.sets_id=[]
3. self.sets_id.append(row1[4])
4.
5. # Append the task type of every task on the page to an array
6. self.sets_type=[]
7. self.sets_type.append(row1[3])

If there are two tasks on the page, then the following applies.

1. # Append the ID of every task on the page to an array
2. self.sets_id=[]
3. self.sets_id.append(row1[4])
4. self.sets_id.append(row2[4])
5.
6. # Append the task type of every task on the page to an array
7. self.sets_type=[]
8. self.sets_type.append(row1[3])
9. self.sets_type.append(row2[3])

If there are three tasks on the page, then the following applies.

1. # Append the ID of every task on the page to an array
2. self.sets_id=[]
3. self.sets_id.append(row1[4])
4. self.sets_id.append(row2[4])
5. self.sets_id.append(row3[4])
6.
7. # Append the task type of every task on the page to an array
8. self.sets_type=[]
9. self.sets_type.append(row1[3])
10. self.sets_type.append(row2[3])
11. self.sets_type.append(row3[3])

If there is a full set of tasks on the page, then the following applies.

1. # Append the ID of every task on the page to an array
2. self.sets_id=[]
3. self.sets_id.append(row1[4])
4. self.sets_id.append(row2[4])
5. self.sets_id.append(row3[4])
6. self.sets_id.append(row4[4])
7.
8. # Append the task type of every task on the page to an array
9. self.sets_type=[]
10. self.sets_type.append(row1[3])

Chester Lloyd Computer Science 114

11. self.sets_type.append(row2[3])
12. self.sets_type.append(row3[3])
13. self.sets_type.append(row4[3])

Once these two arrays have been created, I created a new function that is called, save_changes. This
function will be involved in saving the changes to the tasks. Once called, it checks if there are zero
tasks in the database. If so, it should return and no changes should occur, as there are no tasks to
modify. Then the content of every entry box within the tasks page is assigned a variable. These
variables are for the task name, subject and due date. Each row and column has its own unique
variable.

14. def save_changes(self):
15. # If there are no tasks present, return
16. if self.tasknumber == 0:
17. return
18.
19. # Get data from the rows
20. t1n=self.name_1.get()
21. t1s=self.subject_1.get()
22. t1d=self.date_1.get()
23. t2n=self.name_2.get()
24. t2s=self.subject_2.get()
25. t2d=self.date_2.get()
26. t3n=self.name_3.get()
27. t3s=self.subject_3.get()
28. t3d=self.date_3.get()
29. t4n=self.name_4.get()
30. t4s=self.subject_4.get()
31. t4d=self.date_4.get()

Then, I will open a connection to the database in preparation for updating the data.

1. self.conn = sqlite3.connect('tasks.db')

The next part of this function is reliant on the number of tasks on the page. If there is not a full set of
tasks (less than four but greater than zero) then the number of full rows is calculated.

1. # If a page isn't full, use this array
2. if self.tasknumber<=self.progress[self.page+1] and

self.tasknumber>self.progress[self.page]:
3. self.fullRows = self.tasknumber - self.progress[self.page]

If there is only a single task present on the page then, the date of this task is reversed ready for
insertion into the database. The ID of the last row in the database is calculated and the task name,
subject and date is inserted into the database. Then the corresponding record in the first row is
removed from the database. This gives the effect that the task has been updated as it has been
replaced with a task of newer data modified by the user.

Chester Lloyd Computer Science 115

1. if self.fullRows == 1:
2. date1=t1d.split('/')
3. t1d=date1[2]+"/"+date1[1]+"/"+date1[0]
4. lastRow = self.conn.execute("SELECT MAX(id) FROM TASKS")
5. for row in lastRow:
6. self.id = row[0]
7. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB)

values (?, ?, ?, ?, ?)", (self.id+1, t1n, t1s, t1d, self.sets_type[0]))
8. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[0])+"';")

If there is only are two tasks present on the page than, a similar process will occur that will update
two tasks.

1. if self.fullRows == 2:
2. date1=t1d.split('/')
3. date2=t2d.split('/')
4. t1d=date1[2]+"/"+date1[1]+"/"+date1[0]
5. t2d=date2[2]+"/"+date2[1]+"/"+date2[0]
6. lastRow = self.conn.execute("SELECT MAX(id) FROM TASKS")
7. for row in lastRow:
8. self.id = row[0]
9. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB)

values (?, ?, ?, ?, ?)", (self.id+1, t1n, t1s, t1d, self.sets_type[0]))
10. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB)

values (?, ?, ?, ?, ?)", (self.id+2, t2n, t2s, t2d, self.sets_type[1]))
11. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[0])+"';")
12. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[1])+"';")
13.

If there is only are three tasks present on the page than, a similar process will occur that will update
all three tasks.

1. if self.fullRows == 3:
2. date1=t1d.split('/')
3. date2=t2d.split('/')
4. date3=t3d.split('/')
5. t1d=date1[2]+"/"+date1[1]+"/"+date1[0]
6. t2d=date2[2]+"/"+date2[1]+"/"+date2[0]
7. t3d=date3[2]+"/"+date3[1]+"/"+date3[0]
8. lastRow = self.conn.execute("SELECT MAX(id) FROM TASKS")
9. for row in lastRow:
10. self.id = row[0]
11. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB)

values (?, ?, ?, ?, ?)", (self.id+1, t1n, t1s, t1d, self.sets_type[0]))
12. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB)

values (?, ?, ?, ?, ?)", (self.id+2, t2n, t2s, t2d, self.sets_type[1]))
13. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB)

values (?, ?, ?, ?, ?)", (self.id+3, t3n, t3s, t3d, self.sets_type[2]))
14. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[0])+"';")
15. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[1])+"';")
16. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[2])+"';")

If there is a full set of tasks, there is no need to calculate the number of tasks in the page as every
row is full and can be assumed that all data in the current page should be updated. This is a similar
process to the previous three, with the exception that all four rows are involved.

Chester Lloyd Computer Science 116

1. else:
2. # Rearrange dates from the rows
3. date1=t1d.split('/')
4. date2=t2d.split('/')
5. date3=t3d.split('/')
6. date4=t4d.split('/')
7. t1d=date1[2]+"/"+date1[1]+"/"+date1[0]
8. t2d=date2[2]+"/"+date2[1]+"/"+date2[0]
9. t3d=date3[2]+"/"+date3[1]+"/"+date3[0]
10. t4d=date4[2]+"/"+date4[1]+"/"+date4[0]
11. # Add current data stored in all entry boxes to the database
12. lastRow = self.conn.execute("SELECT MAX(id) FROM TASKS")
13. for row in lastRow:
14. self.id = row[0]
15. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB) values

(?, ?, ?, ?, ?)", (self.id+1, t1n, t1s, t1d, self.sets_type[0]))
16. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB) values

(?, ?, ?, ?, ?)", (self.id+2, t2n, t2s, t2d, self.sets_type[1]))
17. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB) values

(?, ?, ?, ?, ?)", (self.id+3, t3n, t3s, t3d, self.sets_type[2]))
18. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB) values

(?, ?, ?, ?, ?)", (self.id+4, t4n, t4s, t4d, self.sets_type[3]))
19.
20. # Remove the old records from the database
21. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[0])+"';")
22. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[1])+"';")
23. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[2])+"';")
24. self.conn.execute("DELETE from TASKS where ID='"+

str(self.sets_id[3])+"';")

Once the new data has been written to the database and the old data removed, it is required that
the page is updated. This makes use of a function that I had created previously when adding the
delete function. The following function will commit any changes made to the database, close the
connection to the database and finally call the setup_data function. This function reads all the tasks
from the database and adds these to the pages, giving the effect that the changes have saved and
the new data is now presented to the user.

1. self.refresh_task_list_remove()

To use this function, it must be called upon the user’s request. I introduced a new button into the
program that will allow the user to save the modifications of the tasks on request. I chose to add this
button in the lower right next to the add task button. I chose this location because the aesthetics
would appear symmetrical with two circular buttons that control the page s to the left and two
circular buttons to the right with the page counter in the centre. The code that I have written below
will add the button with the new ‘double tick’ icon in the correct location on the page. The code fpor
this button will be written inside the load_rows function.

1. button_save = Button(self, image=self.save, command=self.save_changes, anchor = W)
2. button_save.configure(border=0, relief = FLAT, highlightthickness=0)
3. button_save_window = self.canvas.create_window(452, 315, anchor=NW,

window=button_save)

Chester Lloyd Computer Science 117

Test Test Data Expected Result Actual Result / Evidence

Open the
program

N/A The program should show
the overview tab with the
new button in place.

Add 4 tasks
to the
program

N/A The program should show
the three tasks on the page.

Edit the
Name of
every task
and press the
save button

Task A
Task B
Task C
Task D

All tasks will be rewritten to
the database with their new
names and should be
presented to the user.

Edit the
Subject of
every task
and press the
save button

Subject 1
Subject 2
Subject 3
Subject 4

All tasks will be rewritten to
the database with their new
subjects and should be
presented to the user.

Edit the date
of every task
and press the
save button

01/01/2017
02/02/2017
03/03/2017
04/04/2017

All tasks will be rewritten to
the database with their new
dates and should be
presented to the user.

Chester Lloyd Computer Science 118

Development Review:
This iteration focused upon adding the option to modify tasks. Any task that has been added to the
program must be able to be adjusted where appropriate as outlined in my success criteria.

My initial interpretation of this task was to use the main tasks page as an input too. I used the entry
boxes available to allow modifications to the data presented. This worked by adding in a save button
that once clicked would take any data in these entry boxes and replacing the tasks on the page with
the new data.

After testing every field available, the tasks were updated successfully.

Chester Lloyd Computer Science 119

Information Section:
This program is now capable of storing, sorting, modifying and deleting tasks. As this is designed to
replace a school planner, there must be more functions to this software. The next addition that I
plan to make to this program will be adding in access to any important information for the students.

I have chosen to add an information tab to the menu bar along the top of the program as this can be
accessed anywhere within the program. This button can drop down a list of other buttons which can
be used to link to other sections of the program. In the Information menu, I would like to include
links to a school map, contact details, useful websites and a notes page. Each of these features are
available in a standard school planner and are essential features that should be included in this
software.

Adding the Information Tab:
First, I will write the code that will display an extra button in the menu bar with all relevant sub
menu options. Here, I have created all function names that they will call once clicked. I will later
create these functions to perform the appropriate actions.

1. ddata = Menu(menu_bar, tearoff=0)
2. menu_bar.add_cascade(label="Information", menu=ddata)
3. menu_map = Menu(self)
4. menu_map.add_command(label="St George's Academy", command=self.map_sga)
5. menu_map.add_command(label="Carre's Grammar School", command=self.map_cgs)
6. ddata.add_cascade(label="School Maps", menu=menu_map)
7. ddata.add_command(label="Contact Details", command=self.contact)
8. ddata.add_command(label="Useful Websites", command=self.websites)
9. ddata.add_separator()
10. ddata.add_command(label="Notes", command=self.notes)

Once this has been created, I will now need to create the following functions:

map_sga St George’s Academy Map
map_cgs Carre’s Grammar School Map
contact School contact details
websiites Useful websites
notes Notes

School Map:
I will be creating a school map page for two schools as the two that I attend are in a Joint Sixth Form.
Each map for the school will have its own separate page. I will create a back button that will take the
place similar to that of the add task button when tasks are displayed. This back button should return
the user to the tasks page, the home screen. Each page will use an image of the school map, taking
the majority of the space provided.

I have created four coloured back buttons that I will be using in these pages:

Chester Lloyd Computer Science 120

St George’s Academy Map:

A plan of how I would like this map to appear in the program.

1. def map_sga(self):
2. if self.tab == "Overview":
3. self.back = self.greenBack
4. if self.tab == "Homework":
5. self.back = self.blueBack
6. if self.tab == "Coursework":
7. self.back = self.yellowBack
8. if self.tab == "Exam":
9. self.back = self.redBack
10.
11. self.canvas.delete(ALL)
12. button_back = Button(self, image=self.back, command=self.return_tasks, anchor =

W)
13. button_back.configure(border=0, relief = FLAT, highlightthickness=0)
14. button_back_window = self.canvas.create_window(502, 315, anchor=NW,

window=button_back)
15.
16. self.map = PhotoImage(file="map_sga.gif")
17. self.canvas.create_image(54, 0, image = self.map, anchor = NW)

Chester Lloyd Computer Science 121

Carre’s Grammar School Map:

A plan of how I would like this map to appear in the program.

1. def cgs_sga(self):
2. if self.tab == "Overview":
3. self.back = self.greenBack
4. if self.tab == "Homework":
5. self.back = self.blueBack
6. if self.tab == "Coursework":
7. self.back = self.yellowBack
8. if self.tab == "Exam":
9. self.back = self.redBack
10.
11. self.canvas.delete(ALL)
12. button_back = Button(self, image=self.back, command=self.return_tasks, anchor =

W)
13. button_back.configure(border=0, relief = FLAT, highlightthickness=0)
14. button_back_window = self.canvas.create_window(502, 315, anchor=NW,

window=button_back)
15.
16. self.map = PhotoImage(file="map_sga.gif")
17. self.canvas.create_image(0, 0, image = self.map, anchor = NW)

Each map had slightly different sizes; therefore, I needed to alter the coordinates so that they would
both fit within the provided area.

Chester Lloyd Computer Science 122

Test Test Data Expected Result Actual Result / Evidence

Open the
program

N/A The program should show
the overview tab any tasks
written within the database.

Use the
menu bar to
navigate to
the St
George’s map

Information
->
School Maps
->
St George’s
Academy

The program should show a
page without a title bar
containing a large map of St
George’s Academy. There
should also be a return
button in the lower right
hand corner.

Click the
return button

N/A The program should show
the overview tab any tasks
written within the database.

Use the
menu bar to
navigate to
the Carre’s
Grammar
map

Information
->
School Maps
->
Carre’s
Grammar
School

The program should show a
page without a title bar
containing a large map of
Carre’s Grammar School.
There should also be a return
button in the lower right
hand corner.

Click the
return button

N/A The program should show
the overview tab any tasks
written within the database.

The code created for the school maps page worked as expected so no further modifications are
required.

Chester Lloyd Computer Science 123

Contact Details:
Here I will create a page that will show the school’s contact details. I will use a title bar along the top
that will be similar to that on the tasks page, with the exception that the tabs will not be drawn and
instead, a white title will take their place. I will include the school’s logo, name, address, phone
number, email address and website. As this is a program, the phone number, email address and the
website should be links. The phone number should open any external phone application installed on
the computer with the correct number inserted, the email link should execute any email application
installed with the ‘to’ address inserted correctly and finally, the website link should open the user’s
default browser and load the school’s website.

A plan of how I would like this map to appear in the program.

Contact Details

Task Name Subject Due Date

St George’s Academy

Westholme
Sleaford

NG34 7PP
01529 302487

sjsf@st-georges-academy.org
www.st-georges-academy.org

Carre’s Grammar School

Northgate
Sleaford

NG34 7DD
01529 302181

sjsf@carres.lincs.sch.uk
www.carres.lincs.sch.uk

mailto:sjsf@st-georges-academy.org
http://www.st-georges-academy.org/
mailto:sjsf@st-georges-academy.org
http://www.st-georges-academy.org/

Chester Lloyd Computer Science 124

Test Test Data Expected Result Actual Result / Evidence

Open the
program

N/A The program should show
the overview tab any tasks
written within the database.

Use the
menu bar to
navigate to
the contact
details page

Information
->
Contact
Details

The program should show a
page with a smaller title bar
with the text, “Contact
Details.” The page should be
split in half vertically
containing the relevant
contact details for SGA on
the left and CGS on the right.
There should also be a return
button in the lower right
hand corner.

Click the
return button

N/A The program should show
the overview tab any tasks
written within the database.

Chester Lloyd Computer Science 125

Useful Websites:
Using a similar theme to the contact details page, I will again clear the canvas, draw only the title bar
and enter the title of, ‘Useful Websites’ for this page. I will create eight website links that the
students for the selected year group should fund very useful. These will include; apprentices, carers
advice, equation solving tools and the local prospectus. I will create a list of websites where they will
be numbered from 1 to 8 and will be coloured in blue making it apparent that they are links that
once clicked will open in their browser.

Each link should load the respective link in the user’s default browser. This will work by using events.
When the text is clicked, it will call a function with an event that will load the website. This function
used the ‘webbrowser.open_new’ command that opens a given URL within the user’s browser. To
use this command, I must first import the module.

1. import webbrowser

A plan of how I would like this map to appear in the program.

2. def websites(self):
3. if self.tab == "Overview":
4. self.back = self.greenBack
5. if self.tab == "Homework":
6. self.back = self.blueBack
7. if self.tab == "Coursework":
8. self.back = self.yellowBack
9. if self.tab == "Exam":
10. self.back = self.redBack
11.
12. self.canvas.delete(ALL)

Useful Websites

01 Children's Services Young People's Website

02 Lincolnshire's Online Prospectus

03 National Careers Service

04 Bright Knowledge

05 Apprenticeships

06 Careers Box

07 icould

08 SUVAT Solver

Chester Lloyd Computer Science 126

13. self.draw_title_bar()
14. self.canvas.create_rectangle(0, 40, 600, 0, fill=self.colour,

outline=self.colour)
15. self.canvas.create_text(287, 22, text="Useful Websites", font=self.tab_font,

fill="white")
16.
17. button_back = Button(self, image=self.back, command=self.return_tasks, anchor =

W)
18. button_back.configure(border=0, relief = FLAT, highlightthickness=0)
19. button_back_window = self.canvas.create_window(502, 315, anchor=NW,

window=button_back)
20.
21. web1 = self.canvas.create_text(50, 100, text="01", fill="black")
22. web1 = self.canvas.create_text(200, 100, text="Children's Services Young

People's Website", fill="blue")
23. self.canvas.tag_bind(web1, '<ButtonPress-1>', self.open_web1)
24.
25. web2 = self.canvas.create_text(50, 130, text="02", fill="black")
26. web2 = self.canvas.create_text(171, 130, text="Lincolnshire's Online

Prospectus", fill="blue")
27. self.canvas.tag_bind(web2, '<ButtonPress-1>', self.open_web2)
28.
29. web3 = self.canvas.create_text(50, 160, text="03", fill="black")
30. web3 = self.canvas.create_text(149, 160, text="National Careers Service",

fill="blue")
31. self.canvas.tag_bind(web3, '<ButtonPress-1>', self.open_web3)
32.
33. web4 = self.canvas.create_text(50, 190, text="04", fill="black")
34. web4 = self.canvas.create_text(133, 190, text="Bright Knowledge", fill="blue")
35. self.canvas.tag_bind(web4, '<ButtonPress-1>', self.open_web4)
36.
37. web5 = self.canvas.create_text(50, 220, text="05", fill="black")
38. web5 = self.canvas.create_text(129, 220, text="Apprenticeships", fill="blue")
39. self.canvas.tag_bind(web5, '<ButtonPress-1>', self.open_web5)
40.
41. web6 = self.canvas.create_text(50, 250, text="06", fill="black")
42. web6 = self.canvas.create_text(116, 250, text="Careers Box", fill="blue")
43. self.canvas.tag_bind(web6, '<ButtonPress-1>', self.open_web6)
44.
45. web7 = self.canvas.create_text(50, 280, text="07", fill="black")
46. web7 = self.canvas.create_text(102, 280, text="icould", fill="blue")
47. self.canvas.tag_bind(web7, '<ButtonPress-1>', self.open_web7)
48.
49. web8 = self.canvas.create_text(50, 310, text="08", fill="black")
50. web8 = self.canvas.create_text(121, 310, text="SUVAT Solver", fill="blue")
51. self.canvas.tag_bind(web8, '<ButtonPress-1>', self.open_web8)
52.
53. def open_web1(self, event):
54. webbrowser.open_new(r"http://www.teeninfolincs.co.uk")
55. def open_web2(self, event):
56. webbrowser.open_new(r"http://www.14-19.info")
57. def open_web3(self, event):
58. webbrowser.open_new(r"https://nationalcareersservice.direct.gov.uk")
59. def open_web4(self, event):
60. webbrowser.open_new(r"http://www.brightknowledge.org")
61. def open_web5(self, event):
62. webbrowser.open_new(r"http://www.apprenticeships.org.uk")
63. def open_web6(self, event):
64. webbrowser.open_new(r"http://www.careersbox.co.uk")
65. def open_web7(self, event):
66. webbrowser.open_new(r"http://www.icould.com")
67. def open_web8(self, event):
68. webbrowser.open_new(r"http://www.karsten.pw")

Chester Lloyd Computer Science 127

Test Test Data Expected Result Actual Result / Evidence

Open the
program

N/A The program should show
the overview tab any tasks
written within the database.

Use the
menu bar to
navigate to
the useful
websites
page

Information
->
Useful
Websites

The program should show a
page with a smaller title bar
with the text, “Useful
Websites.” The page should
contain eight numbered
websites in a list. Each
website should open when
clicked. There should also be
a return button in the lower
right hand corner.

Click the first
website

N/A The default browser should
load with the Children's
Services Young People's
website.

Click the
fourth
website

N/A The default browser should
load with the Bright
Knowledge website.

Click the last
website

N/A The default browser should
load with the SUVAT
equation solver website.

Click the
return button

N/A The program should show
the overview tab any tasks
written within the database.

Chester Lloyd Computer Science 128

Client Meeting:
This is the fourth meeting with the client. My client has suggested that note should no longer be
accessed through the menu bar. Instead, the user would prefer the option to add notes to their
tasks. They would prefer a solution in which they can select any task on the tasks pages and a new
page will appear with the task information and a large area to insert any of their notes. As well as
this, the user had also requested that the tasks page should no longer be used to modify any of the
tasks data and the delete button should be switched to a modify or view button which will load all
the data regarding the relevant task.

Below is a plan of how the program should appear with these adjustments.

The above shows how the delete buttons have been replaced with icons representing modifications.
Once clicked, the relevant task will be displayed with a large text area used for storing the user’s
notes. Below is a plan of how this page should appear once I create it.

Overview Homework Coursework Exams

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Task Name Subject Due Date

Chester Lloyd Computer Science 129

The task is displayed in the format used in the tasks pages. Below this is a text box that the user can
use to write in any note, it can be left empty if they do not need to use this. Three are three buttons
that I have added to this page; the delete button will remove the task from the database and load
the tasks page, the back button will return to the tasks page and any change made to the task will
not be saved and the save button will save any information that the user has changed and save this
to the database whilst loading the tasks page.

Adjustments:
As the tasks page will not be used to modify the tasks, I deleted all the code for the save_changes
function as this is no longer required. I deleted the following code from the load_rows function as
this is used to place the save button into the page. This button is not needed as I have previously
deleted the function that it has been assigned.

1. button_save = Button(self, image=self.save, command=self.save_changes, anchor = W)
2. button_save.configure(border=0, relief = FLAT, highlightthickness=0)
3. button_save_window = self.canvas.create_window(452, 315, anchor=NW,

window=button_save)

I updated the ‘if statements’ at the beginning of the load_rows function so that the new buttons for
modifying the tasks will be added in the correct colour and the redundant save button is removed.

Overview Homework Coursework Exams

Notes

Task Name Subject Due Date

Chester Lloyd Computer Science 130

1. if self.tab == "Overview":
2. self.page = self.ovpage
3. self.up = self.greenUp
4. self.down = self.greenDown
5. self.back = self.greenBack
6. self.edit = self.greenEdit
7. if self.tab == "Homework":
8. self.page = self.hwpage
9. self.up = self.blueUp
10. self.down = self.blueDown
11. self.back = self.blueBack
12. self.edit = self.blueEdit
13. if self.tab == "Coursework":
14. self.page = self.cwpage
15. self.up = self.yellowUp
16. self.down = self.yellowDown
17. self.back = self.yellowBack
18. self.edit = self.yellowEdit
19. if self.tab == "Exam":
20. self.page = self.expage
21. self.up = self.redUp
22. self.down = self.redDown
23. self.back = self.redBack
24. self.edit = self.redEdit

These variables can now be used to use the correct button depending on the tab. I then Imported
these images for the modify buttons within the init function.

1. self.greenEdit = PhotoImage(file="buttons/green_edit.gif")
2. self.blueEdit = PhotoImage(file="buttons/blue_edit.gif")
3. self.yellowEdit = PhotoImage(file="buttons/yellow_edit.gif")
4. self.redEdit = PhotoImage(file="buttons/red_edit.gif")

The final stage of creating this button is to insert it into the correct position on the page. As they will
be replacing the delete buttons, I can use the existing code and just change the image and
command. Before, the delete buttons were inserted into the page with this code:

1. button_remove_1 = Button(self, image=self.remove, command=lambda:
self.delete_row(0), anchor = W)

2. button_remove_1.configure(border=0, relief = FLAT, highlightthickness=0)
3. button_remove_1_window = self.canvas.create_window(520, 94, anchor=NW,

window=button_remove_1, tags="rowBox")

I have modified these to use the modify icon, a crayon, and to call a load_notes function as opposed
to the delete_row function.

1. button_modify_1 = Button(self, image=self.edit, command=lambda: self.load_notes(0),
anchor = W)

2. button_modify_1.configure(border=0, relief = FLAT, highlightthickness=0)
3. button_modify_1_window = self.canvas.create_window(520, 94, anchor=NW,

window=button_modify_1, tags="rowBox")

Now every button used to load the modify task page has been created and all redundant code from
previously used buttons has been removed and updated. The next part of this task is to create the
load_notes function for when the user clicks this button.

Chester Lloyd Computer Science 131

As I know that I will be using three buttons, delete, return and save, I can assign variables to these so
that the correct colour button will load depending on the current tab that the user had selected.

1. def load_notes(self, task_id):
2. if self.tab == "Overview":
3. self.done = self.greenDone
4. self.delete = self.greenDelete
5. self.back = self.greenBack
6. if self.tab == "Homework":
7. self.done = self.blueDone
8. self.delete = self.blueDelete
9. self.back = self.blueBack
10. if self.tab == "Coursework":
11. self.done = self.yellowDone
12. self.delete = self.yellowDelete
13. self.back = self.yellowBack
14. if self.tab == "Exam":
15. self.done = self.redDone
16. self.delete = self.redDelete
17. self.back = self.redBack

The function will take the variable, task_id, as this will be passed from the previous page. This value
will contain the ID of the selected task within the database so that I can use this to collect all the
relevant information from the database in this page. It will also allow me to delete or modify the
task too. As this is loading a new page, I need to clear the canvas and add in the tabs as usual.

1. self.canvas.delete(ALL)
2. self.draw_title_bar()
3. self.canvas.create_rectangle(0, 40, 600, 0, fill=self.colour,

outline=self.colour)
4. self.draw_tabs()

I then added the row in which the task will be displayed. This will be the same as the tasks page with
the coloured box containing the task name, subject and the due date. I copied the code from the
load_rows function to create the container for the selected task.

1. self.canvas.create_rectangle(30, 132, 548, 81, fill="#f9f9f9",
outline="#f9f9f9", tags="rowBox")

2. self.canvas.create_rectangle(30, 130, 546, 80, fill="white",
outline=self.rowColour, width=2, tags="rowBox")

3.
4. self.task_name = Entry(self,width=45)
5. self.task_name.configure(border=0, relief=FLAT, bg="white")
6. task_name_window = self.canvas.create_window(40, 97, anchor=NW,

window=self.task_name)
7. self.task_subject = Entry(self,width=20)
8. self.task_subject.configure(border=0, relief=FLAT, bg="white")
9. task_subject_window = self.canvas.create_window(320, 97, anchor=NW,

window=self.task_subject)
10. self.task_date = Entry(self,width=15)
11. self.task_date.configure(border=0, relief=FLAT, bg="white")
12. task_date_window = self.canvas.create_window(450, 97, anchor=NW,

window=self.task_date)

The positions of these entry boxes and the outer rectangle is identical to that of the first row in the
page of tasks. Therefore, I did not need to adjust the coordinates of these widgets. To add the notes
textbox, I needed to research how to use a scrolling text field in Python. I found the following which
implements a scrollable text field into a frame in Python2.7.

Chester Lloyd Computer Science 132

This is the code that I had found on the website:

1. from Tkinter import *
2. class scrollTxtArea:
3. def __init__(self,root):
4. frame=Frame(root)
5. frame.pack()
6. self.textPad(frame)
7. return
8.
9. def textPad(self,frame):
10. #add a frame and put a text area into it
11. textPad=Frame(frame)
12. self.text=Text(textPad,height=50,width=90)
13.
14. # add a vertical scroll bar to the text area
15. scroll=Scrollbar(textPad)
16. self.text.configure(yscrollcommand=scroll.set)
17.
18. #pack everything
19. self.text.pack(side=LEFT)
20. scroll.pack(side=RIGHT,fill=Y)
21. textPad.pack(side=TOP)
22. return
23. def main():
24. root = Tk()
25. foo=scrollTxtArea(root)
26. root.title('TextPad With a Vertical Scroll Bar')
27. root.mainloop()
28. main()

I adjusted this example to work within my code as I am using a canvas to place the widgets on.

1. self.tb = Text(self, width=64, height=11)
2. self.tb.configure(border=1, bg="white")
3. self.tb_window = self.canvas.create_window(30, 132, anchor=NW, window=self.tb)

I have manually altered the coordinates so that this text box will be place a few pixels below the task
details and is also aligned to the left margin. To align the right side of this text box with the task
details above, I set the width to 11.

Chester Lloyd Computer Science 133

I then inserted the code to place the three buttons on the page. I am using the same coordinates as
the tasks pages so that there is a common theme and therefore I will not need to alter the
coordinates for this page. I also decided upon the order so that the dele button would be positioned
in the lower right and the return button should be placed to the right of this. This matches the two
buttons to the left and the remaining save button the right.

1. button_delete = Button(self, image=self.delete, command=lambda:
self.delete_notes_task(task_id), anchor = W)

2. button_delete.configure(border=0, relief = FLAT, highlightthickness=0)
3. button_delete_window = self.canvas.create_window(30, 315, anchor=NW,

window=button_delete)
4.
5. button_back = Button(self, image=self.back, command=self.return_tasks, anchor =

W)
6. button_back.configure(border=0, relief = FLAT, highlightthickness=0)
7. button_back_window = self.canvas.create_window(80, 315, anchor=NW,

window=button_back)
8.
9. button_done = Button(self, image=self.done, command=self.check_add_name, anchor

= W)
10. button_done.configure(border=0, relief = FLAT, highlightthickness=0)
11. button_done_window = self.canvas.create_window(502, 315, anchor=NW,

window=button_done)

The delete button will call the delete_notes_task function, the back button will call the return_tasks
function and the save button will call the check_add_name function.

Then, I placed the data from the selected task into the page. I achieved this by using the list of data
for the task and appending each piece of data within that list to a variable. Once completed, I could
insert this data into the respective entry box. However, if the due date is earlier than the current
date, the text colour of the task should be red.

1. self.task_id = self.set[0][4]
2. self.task_type = self.set[0][3]
3. self.task_name.insert(INSERT, self.set[task_id][0])
4. self.task_subject.insert(INSERT, self.set[task_id][1])
5. self.task_date.insert(INSERT, self.set[task_id][2])
6. self.tb.insert(INSERT, self.set[task_id][5])
7.
8. todayDate = (time.strftime("%d/%m/%Y"))
9. if todayDate > self.task_date.get():
10. self.task_name.configure(fg="#F44336")
11. self.task_subject.configure(fg="#F44336")
12. self.task_date.configure(fg="#F44336")

To allow me to reuse previous functions, I have added in a variable called editPage. This will be used
when validating the data before the task is written to the database.

1. self.editPage = True

Chester Lloyd Computer Science 134

Deleting a task:
I have changed the function and method for deleting the tasks from the database. The user will now
no longer be able to remove data from the tasks pages, instead, they must select a task to modify
and then use the on screen delete button. I have written a new function that will delete this task. I
used a lambda function, as this will allow me to pass a variable to the function. The variable that I
chose to pass was the task ID that is very useful as I can easily delete that task with the ID given,
there will be no need to have multiple functions.

1. def save_notes_task(self):
2. t1d=self.task_date.get()
3. date1=t1d.split('/')
4. t1d=date1[2]+"/"+date1[1]+"/"+date1[0]
5.
6. self.conn = sqlite3.connect('tasks.db')
7. self.conn.execute("DELETE from TASKS where ID='"+ str(self.task_id)+"';")
8. lastRow = self.conn.execute("SELECT MAX(id) FROM TASKS")
9. for row in lastRow:
10. self.id = row[0]
11. if self.id == None:
12. self.id = 0
13. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB, NOTES)

values (?, ?, ?, ?, ?, ?)", (self.id+1, self.task_name.get(),
self.task_subject.get(), t1d, self.task_type, str(self.tb.get("1.0", END))))

14. self.conn.commit()
15. self.refresh_task_list_remove()

The data required for me to write a task to the database includes; the task ID, the task name,
subject, due date, the tab and the notes (if any.) First, I collected the date from the entry box
designated to the date input. I then split this up at every ‘/’ and constructed a string with this data to
form a date in the order YYYY/MM/DD as this is the format that is required by SQLite. Then I
connected to the database and executed a command to find the greatest ID of any task within the
database. IF there are no tasks, it should be assumed that the ID to use is zero. I then created an SQL
statement that will add a record into the database with all the information being taken from the
previous screen, the modify page.

Once the task has been written, I call the refresh_task_list function that I have previously written for
efficiency. This commits the changes, closes the connection to the database and final reloads the
tasks page so that the user can see the changes in place with the correct data loaded in. Below is a
copy of the function that I used.

1. def refresh_task_list_remove(self):
2. self.conn.commit()
3. self.conn.close()
4. self.setup_data()

Returning to the Tasks Page:
The return button should return the user to the previous page of tasks without any changes being
submitted to the database.

Chester Lloyd Computer Science 135

Saving a Task:
Saving a task will update the task in the database with the details entered in this page. To save a
task, it must first be validated. This will ensure that the program will not crash with invalid inputs by
the user. I will be using the validation functions that I have previously created for efficiency.
Therefore, I will change these functions so that they will still work for validating when adding a task
and when modifying and applying the changes for a task.

Validating Task Name:
The first piece of data to be validated is the task name. As the name assigned for the entry box of
the task name is the same in the modify and add page, there was no need to modify this function.

1. def check_add_name(self):
2. if self.task_name.get() == "":
3. messagebox.showinfo("Invalid Entry", "Task name cannot be left blank.")
4. else:
5. self.check_add_subject()

Validating Task Subject:
If the task name check has passed, then the subject field must be checked. As the subject entry box
uses the same name for the add task page and modify task page, this function did not need
changing.

1. def check_add_subject(self):
2. if self.task_subject.get() == "":
3. messagebox.showinfo("Invalid Entry", "Subject cannot be left blank.")
4. else:
5. self.check_add_date()

Validating Task Date:
If the subject check has passed, then the date should be checked. The date is entered differently for
the add task page and the modify task page. For the add task page, there are three drop down
menus, the first containing integers from 1 to 31, the second containing a string for each month and
the last contains 5 integers for each year from the current. However, in the modify task page, the
date is inserted in a single entry box with the format of DD/MM/YYYY. Therefore, I will split the next
function into two parts, the first will run if the page validated is the modify tasks page, the second
will run if the add task page is being validated.

If self.editPage is true, then the string from the date entry box is collected in the form of
DD/MM/YYYY. This is split at every ‘/’ which will create a list of three items; the day, the month and
the year. If the length of this list is less than 3, then the message, “Incorrect date format, please use
DD/MM/YYYY” will be presented to the user in the form of a pop up box. If the entry box is left
empty, then the user will receive the following message, “Date cannot be left blank.” If the length of
the data entered in this box does not equal 10, then there are too many or too few characters and
the message, “Incorrect date format, please use DD/MM/YYYY,” is shown. To check that the date
entered is in the form of INTEGER / INTEGER / INTEGER, I then write a test to check if these values
are digits. If not, then there is an error in the date entered and the user will receive a pop up with
the details. Finally, if the second and fifth character in the whole entry box is not a ‘/’ then it does
not follow the correct date format required so the verification will fail. This is the code for this
function that affects the modify page:

Chester Lloyd Computer Science 136

1. def check_add_date(self):
2. if self.editPage:
3. dateData = (self.task_date.get().strip().split('/'))
4. if len(dateData) < 3:
5. messagebox.showinfo("Invalid Entry", "Date cannot be left blank.")
6. self.taskDay = dateData[0]
7. self.monthNumber = dateData[1]
8. self.taskYear = dateData[2]
9.
10. if self.task_date.get() == "":
11. messagebox.showinfo("Invalid Entry", "Date cannot be left blank.")
12. elif len(self.task_date.get()) != 10:
13. messagebox.showinfo("Invalid Entry", "Incorrect date format, please use

DD/MM/YYYY.")
14. elif self.taskDay.isdigit() == False or self.monthNumber.isdigit() == False

or self.taskYear.isdigit() == False:
15. messagebox.showinfo("Invalid Entry", "Incorrect date format, please use

DD/MM/YYYY.")
16. elif (self.task_date.get()[2]) != "/" or (self.task_date.get()[5]) != "/":
17. messagebox.showinfo("Invalid Entry", "Incorrect date format, please use

DD/MM/YYYY.")
18. else:
19. self.check_add_valid_date()

If the page being validated is the add task page, then a different set of checks are performed. As the
user is restricted in terms of entering the date, there will be less verification methods to perform.
The only checks that should be used in this function is to validate that the user has selected an
option for the three entry boxes. This is the same as the old function before adding the above code,
just with the additional ‘else’ statement.

Chester Lloyd Computer Science 137

1. else:
2. if self.task_day.get() == "":
3. messagebox.showinfo("Invalid Entry", "Day cannot be left blank.")
4. else:
5. if self.task_month.get() == "":
6. messagebox.showinfo("Invalid Entry", "Month cannot be left blank.")
7. else:
8. if self.task_year.get() == "":
9. messagebox.showinfo("Invalid Entry", "Year cannot be left

blank.")
10. else:
11. self.check_add_valid_date()

Once the user inputted date has been verified in both cases, I can use these inputs to check if the
date is an actual date. This function will involve converting months given as integers to their name
and vice versa. To do this, I created a dictionary as this can be used to find a value by the ID or the ID
by the value, making it a very useful tool in this process.

1. def check_add_valid_date(self):
2. months = {"January": 1,
3. "February": 2,
4. "March": 3,
5. "April": 4,
6. "May": 5,
7. "June": 6,
8. "July": 7,
9. "August": 8,
10. "September": 9,
11. "October": 10,
12. "November": 11,
13. "December": 12}

To reduce the amount of code required, I decided to use four variables that will be created in the
modify page or add new page part of this function. These will be

Variable Data Type Example

𝑠𝑒𝑙𝑓. 𝑡𝑎𝑠𝑘𝐷𝑎𝑦 Integer 29

𝑠𝑒𝑙𝑓.𝑚𝑜𝑛𝑡ℎ𝑁𝑢𝑚𝑏𝑒𝑟 Integer 12

𝑠𝑒𝑙𝑓.𝑚𝑜𝑛𝑡ℎ𝑁𝑎𝑚𝑒 String December

𝑠𝑒𝑙𝑓. 𝑡𝑎𝑠𝑘𝑌𝑒𝑎𝑟 Integer 2016

If this function is run from the add task page, then the task day, month name and year are all
assigned to the variables self.taskDay, self.monthName and self.taskYear. As the month name has
been given as an input, the number should be found in order to validate the date. I look up every
value in the dictionary until the month name selected matches that in the dictionary. Once
complete, the ID of this item is assigned to the self.monthNumber variable. At this point, all four of
these variables have been assigned, ready for the next stage.

1. if self.editPage == False:
2. self.taskDay = self.task_day.get()
3. self.monthName = self.task_month.get()
4. self.taskYear = self.task_year.get()
5.
6. for name, number in months.items():
7. if self.monthName == str(name):
8. self.monthNumber = number

Chester Lloyd Computer Science 138

If the function is called through the modify task page, then the date is given through a single entry
box in the format of DD/MM/YYYY. This is again, split up at every ‘/’ to form a list of three items for
each part of the date. These three values make up the variables, self.taskDay, self.monthNumber
and self.taskYear. To find the name of the month, I first removed the proceeding 0 from the month
number if present. This gave a single or double digit integer that will now correspond to the ID’s of
the values in the dictionary. Using this new value, I searched through the dictionary, comparing this
value with every ID present until they match. This match will correlate the month ID with the
month’s name. This name is required for use in the error message.

1. else:
2. dateData = (self.task_date.get().strip().split('/'))
3. self.taskDay = dateData[0]
4. self.monthNumber=dateData[1]
5. self.task_year = dateData[2]
6.
7. monthIntegers=[]
8. for n in self.monthNumber:
9. monthIntegers.append(n)
10. if monthIntegers[0]=="0":
11. self.monthNumber=monthIntegers[1]
12.
13. for name, number in months.items():
14. if self.monthNumber == str(number):
15. self.monthName = name

All four variables have been assigned and therefore, I can validate the date for both types of input
pages together. I used the arrays that I created in this function earlier that store the months
containing 30 and 31 days. I continued to reuse the previous code that will show an error message if
the day selected is greater than the maximum allowed for the selected month.

1. # The maximum number of days for each month is determined
2. # 2 arrays are created
3. # The first contains every month that can have up to 30 days
4. # The second contains every month that can have up to 31 days
5. days_30 = (4,6,9,11)
6. days_31 = (1,3,5,7,8,10,12)
7.
8. # If the user enters a day value greater than 30 for a 30 day month, a message

will be shown
9. # If the user enters a day value greater than 31 for a 31 day month, a message

will be shown
10. if int(self.monthNumber) in days_30 and int(self.taskDay) > 30:
11. messagebox.showinfo("Invalid Entry", str(self.monthName)+" can only have up

to 30 days.")
12.
13. elif int(self.monthNumber) in days_31 and int(self.taskDay) > 31:
14. messagebox.showinfo("Invalid Entry", str(self.monthName)+" can only have up

to 31 days.")
15. else:
16. self.check_leap_year()

The final check for the date is to verify that the date is valid for leap years. This will only affect dates
where the user has selected February as the due date. I reused this function from when I created
this earlier. I had only altered the variable names so that I can use the variables created in the
previous function so that it will apply for both types of entry page.

Chester Lloyd Computer Science 139

1. def check_leap_year(self):
2. # Check if the year selected is a leap year
3. # A variable 'leap_year' is created an is assigned as false
4. # If the selected year can be divided by 4, it is considered a leap year
5. # But, if the selected year can be divided by 100, it is no longer a leap year
6. # If the selected year can be divided by 400, it is a leap year
7. leap_year=False
8. if (int(self.taskYear)%4) == 0:
9. leap_year=True
10. if (int(self.taskYear)%100) == 0:
11. leap_year=False
12. elif (int(self.taskYear)%400) == 0:
13. leap_year=True
14.
15. # If the user has selected February and a leap_year is true, the day cannot be

greater than 29
16. # If the user has selected February and a leap_year is false, the day cannot be

greater than 28
17. # If the day is valid, the write_task function is called
18.
19.
20. if int(self.monthNumber) == 2 and leap_year and int(self.taskDay) > 29:
21. messagebox.showinfo("Invalid Entry", "On a leap year,

"+str(self.monthName)+" can only have up to 29 days.")
22. elif int(self.monthNumber) == 2 and not leap_year and int(self.taskDay) > 28:
23. messagebox.showinfo("Invalid Entry", "Not on a leap year,

"+str(self.monthName)+" can only have up to 28 days.")
24. else:
25. if self.editPage == False:
26. self.write_task()
27. else:
28. self.editPage=False
29. self.save_notes_task()

Write Task:
If the user adds a task through the add task page and all data entered passes the validation, then the
write_task function loads. This is the same function as before.

If the user modifies the task, the save_notes_task function loads. This will update the record in the
database with the new data entered in this page. This works by deleting the selected task from the
database. Once removed, it will create a new record with data that is present in the modify tasks
page as this is the new data that the user has submitted.

1. def save_notes_task(self):
2. t1d=self.task_date.get()
3. date1=t1d.split('/')
4. t1d=date1[2]+"/"+date1[1]+"/"+date1[0]
5.
6. self.conn = sqlite3.connect('tasks.db')
7. self.conn.execute("DELETE from TASKS where ID='"+ str(self.task_id)+"';")
8. lastRow = self.conn.execute("SELECT MAX(id) FROM TASKS")
9. for row in lastRow:
10. self.id = row[0]
11. if self.id == None:
12. self.id = 0
13. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB, NOTES)

values (?, ?, ?, ?, ?, ?)", (self.id+1, self.task_name.get(),
self.task_subject.get(), t1d, self.task_type, str(self.tb.get("1.0", END))

14.))
15. self.conn.commit()
16. self.refresh_task_list_remove()

Chester Lloyd Computer Science 140

Testing of the Amendments:

Testing the Edit Page:

Test Test Data Expected Result Actual Result / Evidence

Load the
program

N/A The program should show
every task on the overview
page.

Edit task 1
(click the
crayon
button beside
the task)

N/A The program should show
the first task’s data with a
large text area for notes.

Edit task 2
(click the
crayon
button beside
the task)

N/A The program should show
the second task’s data with a
large text area for notes.

Edit task 3
(click the
crayon
button beside
the task)

N/A The program should show
the third task’s data with a
large text area for notes.

Edit task 4
(click the
crayon
button beside
the task)

N/A The program should show
the fourth task’s data with a
large text area for notes.

The edit page worked as expected and loaded the correct task’s data depending on the button that
was used. The notes box contained any notes that had been previously entered too.

Chester Lloyd Computer Science 141

Testing the Input Validation:

Test Test Data Expected Result Actual Result / Evidence

Edit task 1
(click the
crayon
button beside
the task)

N/A The program should show
the first task’s data with a
large text area for notes.

Clear the task
name and
save

NAME: ‘’ An error message appears
with the text, ‘Task name
cannot be left blank.’

Clear the
subject and
save

SUBJECT: ‘’ An error message appears
with the text, ‘Subject
cannot be left blank.’

Clear the
date and save

DATE: ‘’ An error message appears
with the text, ‘Date cannot
be left blank.’

Change the
third
character
from a ‘/’

DATE:
’06c01/2017’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Change the
sixth
character
from a ‘/’

DATE: ’06/01-
2017’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Chester Lloyd Computer Science 142

Change the
third & sixth
characters
from a ‘/’

DATE:
’06201,2017’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Add more
than 10
characters

DATE:
’06/01/20117’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Add less than
10 characters

DATE:
’06/01/207’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Add non
numeric
characters to
the day

DATE:
’cl/01/2017’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Add non
numeric
characters to
the month

DATE:
’06/@1/2017’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Add non
numeric
characters to
the year

DATE:
’06/01/#¬p7’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Most of the input validation worked as expected. However, there was an issue when changing the
third and sixth character in the entry box. The expected outcome for these of these events was that
an error message appears with the text, ‘Incorrect date format, please use DD/MM/YYYY.’ The
function would then pass, allowing the user to alter their inputs and the program should not crash as
it did during the test.

The problem was the order in which I validated the date. Currently, I split the date into the three
main parts, the day, month and year. If the day was less than 3 in length, an error message would be
shown to the user. Then I check if it is blank, followed by checking the third and sixth character. The
issue with this is that the date is split at every ‘/’ and as there would be a single ‘/’ in the input, this
fails the first check. There are now only two pieces of the date found, not 3, which is less than the
expected 3.

Chester Lloyd Computer Science 143

The code that failed this test:

1. def check_add_date(self):
2. if self.editPage:
3. dateData = (self.task_date.get().strip().split('/'))
4. if len(dateData) < 3:
5. messagebox.showinfo("Invalid Entry", "Date cannot be left blank.")
6. self.taskDay = dateData[0]
7. self.monthNumber = dateData[1]
8. self.taskYear = dateData[2]
9.
10. if self.task_date.get() == "":
11. messagebox.showinfo("Invalid Entry", "Date cannot be left blank.")
12. elif len(self.task_date.get()) != 10:
13. messagebox.showinfo("Invalid Entry", "Incorrect date format, please use

DD/MM/YYYY.")
14. elif self.taskDay.isdigit() == False or self.monthNumber.isdigit() == False

or self.taskYear.isdigit() == False:
15. messagebox.showinfo("Invalid Entry", "Incorrect date format, please use

DD/MM/YYYY.")
16. elif (self.task_date.get()[2]) != "/" or (self.task_date.get()[5]) != "/":
17. messagebox.showinfo("Invalid Entry", "Incorrect date format, please use

DD/MM/YYYY.")
18. else:
19. self.check_add_valid_date()

I changed the order of which these tests were completed. I will first check if the user’s entry is
empty. Followed by this, I will check if the user has not entered 10 characters. Once these has
passed, I will then verify if the third and sixth characters are not forward slashes. This order of these
steps are very important in this process as there would be an out of range error if the user entered
less than 10 characters. This is due to the searching that the will do when finding the third and fifth
character in the entry. If there are less than 5 characters, then this error will occur. However, if I
check that there are exactly 10 characters first, then this error should never occur. Finally, if these
pass, I then split the task up at every forward slash. At this point, there will definitely be two forward
slashes in the correct position allowing the split process to work as intended. Checks are performed
to verify these three pieces of data are only digits, no non-numerical characters.

Chester Lloyd Computer Science 144

1. def check_add_date(self):
2. if self.editPage:
3. # VALIDATION: if date is blank, return message
4. if self.task_date.get() == "":
5. messagebox.showinfo("Invalid Entry", "Date cannot be left blank.")
6. pass
7. # VALIDATION: if date is shorter than 10 characters, return message
8. elif len(self.task_date.get()) != 10:
9. messagebox.showinfo("Invalid Entry", "Incorrect date format, please use

DD/MM/YYYY.")
10. pass
11. # VALIDATION: if date does not include a '/' in the relevant positions,

return message
12. elif (self.task_date.get()[2]) != "/" or (self.task_date.get()[5]) != "/":
13. messagebox.showinfo("Invalid Entry", "Incorrect date format, please use

DD/MM/YYYY.")
14. pass
15. # VALIDATION: if date contains non number characters, return message
16. else:
17. dateData = (self.task_date.get().strip().split('/'))
18. self.taskDay = dateData[0]
19. self.monthNumber = dateData[1]
20. self.taskYear = dateData[2]
21. if self.taskDay.isdigit() == False or self.monthNumber.isdigit() ==

False or self.taskYear.isdigit() == False:
22. messagebox.showinfo("Invalid Entry", "Incorrect date format, please

use DD/MM/YYYY.")
23. pass
24.
25. else:
26. self.check_add_valid_date()

Test Test Data Expected Result Actual Result / Evidence

Change the
third
character
from a ‘/’

DATE:
’06c01/2017’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Change the
sixth
character
from a ‘/’

DATE:
’06/01-2017’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

Change the
third & sixth
characters
from a ‘/’

DATE:
’06201,2017’

An error message appears
with the text, ‘Incorrect date
format, please use
DD/MM/YYYY.’

The adjustments fixed this issue.

Chester Lloyd Computer Science 145

Testing the Update Function:

Test Test Data Expected Result Actual Result / Evidence

Edit task 1
(click the
crayon
button beside
the task)

N/A The program should show
the first task’s data with a
large text area for notes.

Change the
task name

NAME:
‘Complete
ET4.4 Notes’

The program updates the
task’s name and shows the
page of tasks that the user
was previously on.

I stopped testing at this point as I had found there was an error in saving the new data to the
database. The data that the user had written in this page should only update the task selected.
However, the data is written to every task in the database, replacing all their tasks to identical copies
of the task being modified. This is a large bug in the program that must be addressed before I
continue testing the other entry methods.

There were a few errors with this code. Sometimes, when the task was selected to be modified and
then saved, it would sometimes select the wrong task. In addition to this, it would save the changes
to every task in the database too, making every task identical. The third issue that I found during this
testing process was selecting a task to modify after changing the order of the page with the sorting
options.

First, I found that the task ID that was taken by the save_notes_task function was incorrect. Instead
of passing the task ID as it is in the database, it would send a value from 0 to 3, depending on the
row in the page. To fix this issue, I assigned the ‘self.task_id’ variable differently within the
load_notes function. I changed the code from:

1. self.task_id = self.set[0][4]

To the following:

27. self.task_id = (self.set[task_id][4])

This new line will select the task’s data from the tasks array. Within this selected data set, the fourth
item is selected, the task’s ID.

Chester Lloyd Computer Science 146

Now that the function will operate on the correct task, I still have a few bugs to fix. The next is that
the method in which I update the task is very inefficient and would also corrupt the order if the user
were to sort by task added. I will use the SQL update command rather than a delete and insert. This
command will select any task where a selected column matches a given string. Once the record has
been selected, any column can be updated to new values. I will use the task ID to select the task as
this is the unique identifier for each task. Then, I will change the following columns: TASK, SUBJECT,
DATE, TAB and NOTES. This is the data that is entered by the user and are available for the user to
modify.

The function before I changed the SQL query:

28. def save_notes_task(self):
29. t1d=self.task_date.get()
30. date1=t1d.split('/')
31. t1d=date1[2]+"/"+date1[1]+"/"+date1[0]
32.
33. self.conn = sqlite3.connect('tasks.db')
34. self.conn.execute("DELETE from TASKS where ID='"+ str(self.task_id)+"';")
35. lastRow = self.conn.execute("SELECT MAX(id) FROM TASKS")
36. for row in lastRow:
37. self.id = row[0]
38. if self.id == None:
39. self.id = 0
40. self.conn.execute("INSERT INTO TASKS(ID, TASK, SUBJECT, DATE, TAB, NOTES)

values (?, ?, ?, ?, ?, ?)", (self.id+1, self.task_name.get(),
self.task_subject.get(), t1d, self.task_type, str(self.tb.get("1.0", END))

41.))
42.
43. self.conn.commit()
44. self.conn.execute("DELETE from TASKS where ID='"+ str(self.sets_id[0])+"';")
45. self.refresh_task_list_remove()

The function with the update SQL statement:

1. def save_notes_task(self):
2. t1d=self.task_date.get()
3. date1=t1d.split('/')
4. t1d=date1[2]+"/"+date1[1]+"/"+date1[0]
5.
6. self.conn = sqlite3.connect('tasks.db')
7. sql = ''' UPDATE TASKS
8. SET TASK = ? ,
9. SUBJECT = ? ,
10. DATE = ?,
11. TAB = ?,
12. NOTES = ?
13. WHERE ID = ?'''
14. cur = self.conn.cursor()
15. cur.execute(sql, (self.task_name.get(), self.task_subject.get(), t1d,

self.task_type, str(self.tb.get("1.0", END)), str(self.task_id)))
16.
17. self.conn.commit()
18. self.refresh_task_list_remove()

When a task is modified now, the correct task will be selected and the data entered in the page will
be saved to the task in the database. The ID of the task will not be changed so sorting by task added
will no longer show an incorrect order.

Chester Lloyd Computer Science 147

The final bug to correct is caused by changing the order of the tasks before selecting a task to be
modified. The error that I had received was, “IndexError: list index out of range.” This error occurred
when the load_notes function was called. The error means that some data could not be inserted into
the page correctly as some was missing. The list index was out of range, meaning that there was
insufficient data within the array. There are only two places in this program where the data from the
databases is appended to the tasks array. The first is whilst the program first loads during the
setup_data function. The error must be in the second place as that function is used once a sorting
option has been applied to a page.

I found that I haven’t updated the refresh_task_list function which uses the data read from the
database in the selected order. When appending this data to the tasks array, the notes were not
added. This was because I had forgotten to update this function after I had added in the notes
feature into the program, I had only included this at the start of the program.

The function before I had appended the notes data to the tasks array.

1. def refresh_task_list(self):
2. for row in self.cursor:
3. single = [] #Create an array for each task
4. single.append(row[1]) #Add name
5. single.append(row[2]) #Add subject
6. # Reverse the date format (YYYY/MMM/DD => DD/MM/YYYY)
7. dateData = (row[3].strip().split('/'))
8. dateDay = dateData[2]
9. dateMonth = dateData[1]
10. dateYear = dateData[0]
11. dateNew = dateDay + "/" + dateMonth + "/" + dateYear
12. single.append(dateNew) #Add date
13. single.append(row[4]) #Add type
14. single.append(row[0]) #Add ID
15. self.tasks.append(single) #Create an array of each task's array
16. self.conn.close()
17. self.load_rows()

The amendment can be found on line 15, where the fifth piece of task data is added to the tasks
array. This data contains the notes of the task.

1. def refresh_task_list(self):
2. for row in self.cursor:
3. single = [] #Create an array for each task
4. single.append(row[1]) #Add name
5. single.append(row[2]) #Add subject
6. # Reverse the date format (YYYY/MMM/DD => DD/MM/YYYY)
7. dateData = (row[3].strip().split('/'))
8. dateDay = dateData[2]
9. dateMonth = dateData[1]
10. dateYear = dateData[0]
11. dateNew = dateDay + "/" + dateMonth + "/" + dateYear
12. single.append(dateNew) #Add date
13. single.append(row[4]) #Add type
14. single.append(row[0]) #Add ID
15. single.append(row[5]) #Add notes
16. self.tasks.append(single) #Create an array of each task's array
17. self.conn.close()
18. self.load_rows()

Chester Lloyd Computer Science 148

Test Test Data Expected Result Actual Result / Evidence

Edit task 1
(click the
crayon
button
beside the
task)

N/A The program should show
the first task’s data with a
large text area for notes.

Change the
task name

NAME:
‘Complete ET4.4
Notes’

The program updates the
task’s name and shows the
page of tasks that the user
was previously on.

Change the
subject

SUBJECT:
‘Science’

The program updates the
subject of this task and
shows the page of tasks that
the user was previously on.

Change the
due date to
after the
current date

DATE:
‘28/02/2017’

The program updates the
date of this task and shows
the page of tasks that the
user was previously on. The
task should be shown in
black text, not red.

Delete the
notes

NOTES: ‘’ The program updates the
notes for this task and
shows the page of tasks that
the user was previously on.

This is the only field that is
allowed to be saved with no
content.

When changing each piece of data of the task, the database updated with these new values
successfully. As a result of these five tests, I can conclude that any modifications made to any of the
tasks data will be saved. Upon saving, the previous tasks page will be loaded.

Chester Lloyd Computer Science 149

Testing the Delete Function:

Test Test Data Expected Result Actual Result / Evidence

Scroll to a
page with a
single task
remaining

N/A The program should show
the last task on the tasks
page.

Select the tab
which this
task is saved
as

N/A The program will show this
task on the task’s type page.

Delete the
task

N/A The task page will be empty
and the message, ‘No tasks
to display’ will be displayed.

Select the
overview tab

N/A The task page will scroll to
the previous page or it would
be empty and the message,
‘No tasks to display’ will be
displayed.

The reason for this sequence of tests was to test that the delete button would remove the task from
the database entirely. By switching pages, this would show that the task had been completely
removed as it wouldn’t appear anywhere in the program where it had previously.

Chester Lloyd Computer Science 150

This test had highlighted an issue with the program. The overview page caused an error because it
was showing a page with no tasks that was not page one. Usually, if the last task on a page was to be
deleted, the page counter would reduce by two, hence the previous page would be displayed.
However, if the current page is the first page, then the message, ‘No tasks to display’ will be shown.

As this task was removed from another page, the overview page counter had not been adjusted to
this change. To fix this issue I changed certain page counters to ‘0’ upon loading the setup_data
function. I will only change three of these page counters where the one that will not be adjusted is
controlling the current tab. By doing so, when switching a tab, the tab will begin at the first page
every time.

The part of the function that I have updated to fix this bug:

1. def setup_data(self):
2. if self.tab == "Overview":
3. self.colour = "#4caf50"
4. self.rowColour = "#c8e6c9"
5. self.add = self.greenAdd
6. self.delete = self.greenDelete
7. self.remove = self.greenRemove
8. self.hwpage=0
9. self.cwpage=0
10. self.expage=0
11.
12. if self.tab == "Homework":
13. self.colour = "#4472C4"
14. self.rowColour = "#bbdefb"
15. self.add = self.blueAdd
16. self.delete = self.blueDelete
17. self.remove = self.blueRemove
18. self.ovpage=0
19. self.cwpage=0
20. self.expage=0
21.
22. if self.tab == "Coursework":
23. self.colour = "#ff9800"
24. self.rowColour = "#ffe0b2"
25. self.add = self.yellowAdd
26. self.delete = self.yellowDelete
27. self.remove = self.yellowRemove
28. self.ovpage=0
29. self.hwpage=0
30. self.expage=0
31.
32. if self.tab == "Exam":
33. self.colour = "#ff5722"
34. self.rowColour = "#ffcdd2"
35. self.add = self.redAdd
36. self.delete = self.redDelete
37. self.remove = self.redRemove
38. self.ovpage=0
39. self.hwpage=0
40. self.cwpage=0

Chester Lloyd Computer Science 151

Development Review:
This is the last development cycle before final testing. In this previous cycle, I have added the
information section where the school’s contact details, map and useful websites can be accessed.

The last development was focused upon adding in this information about the school and any
academic content that student’s may find useful. I have not fully met his criteria as it sates, “There
should be school information available to access (including: a school map, term dates, contact
details and website links).” I have not included any term dates in this software and this will be
included in future development, however, all other requirements in this specification has been met
thus far.

In addition to this, I had adjusted the program to user feedback where a task should be able to be
modified in a new page. Where any task selected can be loaded onto its own, separate page with all
of the data presented and an area to add notes about the task. Due to this request, the notes
section that would be accessed through the menu bar will no longer be developed.

Chester Lloyd Computer Science 152

Chester Lloyd Computer Science 153

3.4 - EVALUATION

3.4 - EVALUATION

Chester Lloyd Computer Science 154

3.4.1 - Testing to Inform Evaluation:

Testing the Solution:

When the program first loads, this page will be shown. This is the overview page that shows every
task that has been saved in this program in ascending order sorted by the task date. As there are no
tasks written in this program, the message, “No tasks to display” is shown. There are also less than
four tasks to display on this page which causes the page up and page down buttons to both be
disabled. In addition, the page counter will also be hidden as there are zero pages available. All of
these features have worked as expected as seen in the screenshot above.

Chester Lloyd Computer Science 155

Adding a Task:

When the add task button has been
clicked, this page is loaded. There are six
entry methods available, all compulsory.

The page has been constructed correctly
and all the correct entry methods have
been loaded with their respective
heading.

The task name and subject are entered
through the two entry boxes in the left
box. Any value can be entered into
these but they must not be left empty.

I have filled in the task name and the
subject appropriately. The input which I
have just written should be allowed by
the validation functions so that the data
is written to the database.

When setting the due date of the task,
the user must select three options from
each dropdown menu. The first is the
day. To select the day, the user should
click the dropdown menu and a list of
every available day should appear. The
list of integers begins at ‘1’ and
continues up to and including ’31.’

The options here are independent from
the other two variables that make up
the date. I had decided that this would
be the best method in case the user was
to change their selection for any of the
other two values and accidently reset
any other previously selected values.

Chester Lloyd Computer Science 156

The month can be selected in a similar
method.

The only difference is that the user will
be presented with the names of each
month in chronological order which
allows for a more user friendly interface.
Each month is listed and the user should
simply select the month that applies.

Here, every month had displayed
correctly and in order.

The years displayed within this
dropdown are dynamic. These values
will vary depending upon the year in
which the user adds a task. To ensure
that the user wouldn’t have to scroll a
long way or struggle to find a year, I
decided that the program will output
the soonest year as the current year
with the following four consecutive
years.

I had chosen these five years as the
purpose of this program is to act as a
student organizer and it is unlikely that a

student would have any tasks due outside of this five-year duration. As the current year is 2017, it
has successfully inserted the five choices of year.

The final detail that must be given is the
task type. This will be used when
displaying the tasks on different pages.
There are four tabs but three options.
The first tab, ‘overview’ will show every
task regardless of the type so that the
user can clearly see an overview of
every upcoming task without any need
to keep switching between the three
pages.

The three available tabs have been
made available in the dropdown menu
and also in order of the tab along the
top of this program.

Chester Lloyd Computer Science 157

Now that all the relevant information
has been inserted, the user can now
click the tick button to submit this into
the database.

There is also the option to delete all of
this data and return to the previous
page by using the delete button.

As the data that I had entered was valid,
the task had been successfully written
to the database. There were no dialogue
boxes displayed informing the user of
invalid data either. The overview tasks
page is loaded as a result. There is only
one task shown on this page as I have
only created this task.

If the user switches to the homework
tab, no tasks have been shown. This is
because there are no tasks with the task
type set to homework.

Chester Lloyd Computer Science 158

However, on the coursework tab, this
task is displayed. This has worked as
expected and the task that I had
previously created is positioned on the
correct page.

On the exams page, there are no tasks
available. This is the correct outcome as
no tasks have the exam task type
selected.

Chester Lloyd Computer Science 159

Modifying a Task:

If the user were to click the crayon icon
next to the task, this page will be shown.
Here the task is loaded into a new
screen where the user has the ability to
make any changes to the task’s data.

The name and the subject can be
altered where the same validation
checks will run when adding the task
once the user clicks the save button.

The date can also be modified. Instead
of selecting an integer day, followed by
a string month and an integer year, all

values entered are integers. The format has changed so that the user will now need to enter a date
with the following format, ‘DD/MM/YYYY.’ The date entered will be validated to ensure that it is a
real date before saving to the database.

A large text area can be found below. This can be used for the user to insert any notes for this
specific task. This field can be left blank too as it should not be compulsory for the student to set
notes on their tasks if they feel they do not need them. When the task is first created, this field is
empty by default, as shown in the screenshot above.

If the user were to add these notes to
the task, it should save this data to the
database. When the user wants to view
these notes, they can simply click the
crayon icon and view this screen again.

If they do not want to save any changes
to the data, they can simply click the
back arrow which will return the user to
their previous page. Alternatively, if
they would like to delete this task, they
can click the bin icon to permanently
remove the task’s data from the
database.

Chester Lloyd Computer Science 160

Here I have changed the date so that it
will now be due for 25/01/2017. By
clicking the save button, the program
will return to the previous page
(overview) showing the adjustments.

The date has been updated and the task
has been highlighted in red. This is
because the current date is 06/02/2017
and this task has been classed as
overdue.

Chester Lloyd Computer Science 161

Deleting a Task:

To delete a task, first it must be opened
for modifications by clicking the crayon
icon next to the task to be removed.

The task’s data is then loaded into a new
screen where the user has the ability to
make any changes to the task’s data.

Once the delete button has been
pressed, the task’s record in the
databases is removed.

The previous page is then shown and as
there are no tasks available, the
following message is displayed, “No
tasks to display.” Additionally, the page
counter is also hidden and the page
scrolling buttons are both disabled.

Chester Lloyd Computer Science 162

Sorting Tasks:

Here is the program with five sample
tasks written in. Each task is different so
that the sorting algorithms can be
clearly demonstrated.

The sort button in the menu bar will list
all methods of sorting the tasks. By
clicking any of these methods, the tasks
below will rearrange to the selected
option.

Sort by time oldest:

The tasks changed order so that the task
due soonest will appear last.

Sort by time of task added:

The tasks changed order so that the task
that I had added first will appear
soonest.

Chester Lloyd Computer Science 163

Sort by task A-Z:

The tasks changed order so that the
tasks appear in ascending alphabetical
order by their name.

Sort by task Z-A:

The tasks changed order so that the
tasks appear in descending alphabetical
order by their name.

Sort by subject A-Z:

The tasks changed order so that the
tasks appear in ascending alphabetical
order by their subject.

Chester Lloyd Computer Science 164

Sort by subject Z-A:

The tasks changed order so that the
tasks appear in descending alphabetical
order by their subject.

Sorting the tasks should work on all four
tabs within the program, individually.

Upon loading the homework tab, each
task is sorted by time due soonest by
default.

Sort by time oldest:

The tasks changed order so that the task
due soonest will appear last.

Chester Lloyd Computer Science 165

Sort by time of task added:

The tasks changed order so that the task
that I had added first will appear
soonest.

Sort by task A-Z:

The tasks changed order so that the
tasks appear in ascending alphabetical
order by their name.

Sort by task Z-A:

The tasks changed order so that the
tasks appear in descending alphabetical
order by their name.

Chester Lloyd Computer Science 166

Sort by subject A-Z:

The tasks changed order so that the
tasks appear in ascending alphabetical
order by their subject.

Sort by subject Z-A:

The tasks changed order so that the
tasks appear in descending alphabetical
order by their subject.

Upon loading the coursework tab, each
task is sorted by time due soonest by
default.

Chester Lloyd Computer Science 167

Sort by time oldest:

The tasks changed order so that the task
due soonest will appear last.

Sort by time of task added:

The tasks changed order so that the task
that I had added first will appear
soonest.

Sort by task A-Z:

The tasks changed order so that the
tasks appear in ascending alphabetical
order by their name.

Chester Lloyd Computer Science 168

Sort by task Z-A:

The tasks changed order so that the
tasks appear in descending alphabetical
order by their name.

Sort by subject A-Z:

The tasks changed order so that the
tasks appear in ascending alphabetical
order by their subject.

Sort by subject Z-A:

The tasks changed order so that the
tasks appear in descending alphabetical
order by their subject.

Chester Lloyd Computer Science 169

Upon loading the exams tab, each task is
sorted by time due soonest by default.

There is only a single task present on
this page. For demonstration purposes, I
will add the following task:

Filters, Electronics, 07/03/2017, Exam

Now that there are two tasks present, I
can now evidence the result of each
sorting method on the exams page.

Sort by time oldest:

The tasks changed order so that the task
due soonest will appear last.

Chester Lloyd Computer Science 170

Sort by time of task added:

The tasks changed order so that the task
that I had added first will appear
soonest.

Sort by task A-Z:

The tasks changed order so that the
tasks appear in ascending alphabetical
order by their name.

Sort by task Z-A:

The tasks changed order so that the
tasks appear in descending alphabetical
order by their name.

Chester Lloyd Computer Science 171

Sort by subject A-Z:

The tasks changed order so that the
tasks appear in ascending alphabetical
order by their subject.

Sort by subject Z-A:

The tasks changed order so that the
tasks appear in descending alphabetical
order by their subject.

Chester Lloyd Computer Science 172

Overdue Tasks:

Tasks that are overdue should have red
text.

The current date is 08/02/2017, so the
first task in the page is considered
overdue, and therefore is red.

Chester Lloyd Computer Science 173

Databank:

In the dropdown menu, the user can
select the ‘Information’ button to view
data about their school.

The list includes:

• A school map

• Contact details

• Useful websites

If the user selects the school map, they
will be given a choice of the two schools.
Upon selecting a school, a map will be
displayed in the main window as shown
to the left.

If the user selects contact details, two
columns will be displayed, one per
school. The information given is the
school name, their logo, a phone
number, email address, the website and
the address.

The phone number, email and website
can be clicked on to launch their
respective clients (the website will open
their browser, for example).

Chester Lloyd Computer Science 174

The final option is the list of useful
websites. By clicking on a link, the
default browser will open a new tab
with the corresponding URL.

The back button will load tasks page for
their current tab and page number.

Chester Lloyd Computer Science 175

Usability Testing:
Throughout my previous tests, evidence of usability features can be found. The theme is consistent,
allowing the user to easily understand the structure of the program as a whole. All pages only
contain the essential objects to form the page leaving a clutter free design for ease of use. The
navigation system I used where every button used follows the same theme. Each button matches its
surrounding colours and they all use white, easy to understand icons to highlight their purpose.
Where in use, there are only three main buttons positioned at the bottom of the page. These
buttons are positioned in the same configuration with two to the left edge and a single button
placed on the right-hand side. They are all placed at the same vertical level, where their horizontal
position varies with three set positions.

The colours have been chosen carefully to complement each other. The background colour is always
white so that the page content is always very easy to see. An exception to this can be found on the
add task page where two lightly shaded grey rectangles were used to structure the page.

Each page contains buttons that
follow the theme of the tab. The
buttons are identical in colour,
positioning, layout and size.

As per the user group feedback, I added
a text area for the student to store
additional notes for any of their tasks. I
filled the remaining space available in
the widow so that the notes can be
easily seen without the need for
constant scrolling to view the notes. This
improves the ease of use of this pages.

I have used the same style to display the
task’s data on the edit page. Allows for
easier understanding as the data is
presented the same way every time.

Chester Lloyd Computer Science 176

The below screenshots show the usability features that I have implemented for the user’s input. I
have used the most appropriate input methods for each piece of data required to store a task to
improve the ease of use. I used dropdown menus for the date and type as there can only be a set list
of options available. For the day, I chose to list every number from 1 to 31 so that the user can
quickly select the correct number. The month drop down menu lists every month in chronological
order in terms of their name as this is easier to understand when selecting the month. The year will
display a four-digit integer with only the current and next four years available. By reducing the
number of options available, reduces the size of the menu and means that the user will not need to
search for the correct year from a large list. The task type will only show 3 options as there are only
3 tabs with a unique set of tasks

Chester Lloyd Computer Science 177

Justification with Evidence:

Clean, Simple GUI
As this is an opinion based test, I asked this question in the student feedback form where all
participants involved agreed with this statement. This is a success because the program is designed
for these students and the criteria stated it must be clean and easy to use because of this. Since
every student agreed that the GUI was well designed and was simple and easy to use, this is very
successful.

Input Validation:
All of my inputs required input validation to ensure that the program runs smoothly, without any
errors. As well as checking if an input is present, it checked if dates were legitimate dates or if they
were in the correct format too.

Chester Lloyd Computer Science 178

Appropriate Input Methods
For any short piece of text to be entered, such as the task title or subject, I had used text entry boxes
where I had adjusted their width to suite the purpose. This can be seen in the modify task page
where the task name, subject and date have been set to specific widths so that they all fit in a single
line where there is plenty of room to enter the details. Also on the modify tasks page, there is a
notes section below. I had chosen to use a text area with a scrolling side bar because the user may
need to use many lines to write notes about a task. The scrolling side bar would allow the user to
navigate through their notes easily. Because of these reasons, the input methods that I have chosen
here are relevant to the type of data required and improves ease of use.

On the insert tasks page, I had chosen to use four dropdown menus for the date and task type. For
the day, I had chosen to list every number from 1 to 31. These are the only values required and will
not allow the user to insert an invalid day value. For the month, I had listed the month’s name for all
twelve months so that it appears easier to read and work with. It prevents the user from having to
convert the month’s name to the number before selecting a month. The last part of the due date
was another drop down menu for the year. I had listed the current year followed by the following
four. This simplifies the options that the user can select as it removes any years that the user will not
need to use at the current time of insertion.

The task type can only be one of three options and therefore it would be very appropriate to use a
drop down menu to list them. Not only does it remove any chance of an invalid entry, it improves
the functionality as the user will not need to write their own in or include a spelling mistake.

Chester Lloyd Computer Science 179

Clearly Labelled Buttons
Throughout the program, I have used a variety of buttons so that the user can access additional
functions. I have taken care in choosing the design for these so that they were as easy to interpret as
possible. I have used Google’s Material Design theme with these floating action buttons. I selected
four Material Design colours from their pallet for the background colour, before adding an icon in
the foreground. The icons are simplistic and maintain a constant theme where they are white with a
transparent background. I chose the icons that I thought would be best suited for the function that it
controls.

Below is a table of the icons that I have selected for each function.

Icon Function

Bin Delete

Up Arrow Page Up

Down Arrow Page Down

Plus Add Task

Curved Left Arrow Return

Below are two screenshots from two pages within my program. At the bottom of each page, there
are a total of five buttins with the design which I have previously described. They clearly show the
purpose that they serve, especially when given the page that they have been placed on.

Chester Lloyd Computer Science 180

Testing Robustness:
I will perform some additional tests to verify the integrity of the solution. I will attempt to break the
program with these tests as a failure would result in evidence supporting that the program is not
robust. I will enter invalid inputs for every input method available in the program. Input methods are
where data can be entered by the user and is then interpreted. If the data is invalid, it is not
expected, errors could be caused.

Test Test Data Justification Actual Result / Evidence

Add a task
with valid
details.

Differentiation
Maths
12/12/2016
Homework

Any tasks with valid details
must be accepted by the
program. If they are not, the
program is not functioning
correctly. It must store any
valid details given by the
student as all tasks will be
different.

Add a task
without a
name.

Maths
12/12/2016
Homework

An empty filed should not
be allowed as this would
cause potential errors when
reading the data later on. A
message box should be
displayed to the user with
the message, “Task name
cannot be left blank.”

The message was presented to
the user which shows that the
validation had worked correctly,
maintaining the integrity of the
solution.

Add a task
without a
subject.

Differentiation

12/12/2016
Homework

This is a required entry and
leaving it null would result
in errors when reading the
file or when sorting the
tasks by subject. This should
be prevented and the
following message should
be displayed to the user,
“Subject cannot be left
blank.”

The message box had been
displayed and the input was not
accepted.

Add a task
without a
date.

Differentiation
Maths

Homework

The due date is a key piece
of data for the functioning
of the program. By default,
all tasks are sorted by their
due dates. By not selecting
a due date, the program will
not load the tasks correctly.
If this rejects the given date
correctly, a message box
should appear with the text,
“Date cannot be left blank.”

The message box was presented
to the user and the input ws not
accepted. The test had passed.

Chester Lloyd Computer Science 181

Add a task
without a day
selected.

Differentiation
Maths
/12/2016
Homework

The date cannot be
submitted if pieces of the
date are not present. If the
day is null, a message box
should appear with the text,
“Day cannot be left blank.”

The task was not saved and the
output message was correct.

Add a task
without a
month
selected.

Differentiation
Maths
12/ /2016
Homework

The date cannot be
submitted if pieces of the
date are not present. If the
month is null, a message
box should appear with the
text, “Month cannot be left
blank.”

The task was not saved and the
output message was correct.

Add a task
without a year
selected.

Differentiation
Maths
12/12/
Homework

The date cannot be
submitted if pieces of the
date are not present. If the
month is null, a message
box should appear with the
text, “Year cannot be left
blank.”

The task was not saved and the
output message was correct.

Insert a task
with an invalid
date.

Differentiation
Maths
31/04/2017
Homework

This will verify that the
program shouldn’t allow
dates where the day
selected is greater than the
maximum number of days
in the month.

It had stated that the month
selected, April, can only have 30
days. This has succesfully
validated the input and informed
the user of the error.

Insert a task
with an invalid
date.

Differentiation
Maths
29/02/2017
Homework

This will verify that the
program shouldn’t allow a
day value greater than 28
for February while it is not a
leap year.

It had stated that not on a leap
year, February, can only have 28
days. This has succesfully
validated the input and informed
the user of the error.

Insert a task
with an invalid
date.

Differentiation
Maths
29/02/2016
Homework

This will verify that the
program should allow a day
value greater of 29 or less
for February on a leap year.

It had allowed this date as it is
valid. The changes were made to
the task and it was saved.

Chester Lloyd Computer Science 182

Insert a task
without a task
type selected.

Differentiation
Maths
25/04/2017

The test here will check that
the program will not save a
task if the type has not been
selected. This is an
important test as all tasks
must be assigned a type.
This is because the tabs
along the top of the
program relies on this field
to correctly organise the
user’s tasks.

It had stated that the task type
cannot be left blank so the user
will now know where the
mistake in this form is. This
guides the user to correct the
error so that the task can be
saved and the incorrect entries
are resolved.

Modify the
third
character of
the date.

Differentiation
Maths
06c01/2017
Homework

This will test the validation
for the date entry box on
the modify page. The
format of the due date is
strictly DD/MM/YYYY and
any inaccurate entries must
be discarded.

The user has been alerted of the
date format to use and the date
was not accepted.

Modify the
sixth
character of
the date.

Differentiation
Maths
06/01@2017
Homework

This test will enter a date in
an incorrect format to
prompt the program for an
incorrect format message.

The user has been alerted of the
date format to use and the date
was not accepted.

Modify the
third and sixth
character of
the date.

Differentiation
Maths
06#01{2017
Homework

This test will enter a date in
an incorrect format to
prompt the program for an
incorrect format message.

The user has been alerted of the
date format to use and the date
was not accepted.

Modify the
date to
greater than
10 characters
in length.

Differentiation
Maths
06/01/20017
Homework

This test will enter a date in
an incorrect format to
prompt the program for an
incorrect format message.
The date can only accept 10
characters as this is all that
is required. A different
value means that the date
has been given in an invalid
format.

The user has been alerted of the
date format to use and the date
was not accepted.

Chester Lloyd Computer Science 183

Modify the
date to fewer
than 10
characters in
length.

Differentiation
Maths
6/01/2017
Homework

This test will enter a date in
an incorrect format to
prompt the program for an
incorrect format message.
The date can only accept 10
characters as this is all that
is required. A different
value means that the date
has been given in an invalid
format.

The user has been alerted of the
date format to use and the date
was not accepted.

Modify the
date to
include
characters as
the day value.

Differentiation
Maths
c6/01/2017
Homework

This test will enter a date in
an incorrect format to
prompt the program for an
incorrect format message.
The date can consist of
numbers for the three
parts. Any additional
characters will be classed as
an invalid entry where an
invalid format has been
given.

The user has been alerted of the
date format to use and the date
was not accepted.

Modify the
date to
include
characters as
the month
value.

Differentiation
Maths
16/Kl/2017
Homework

This test will enter a date in
an incorrect format to
prompt the program for an
incorrect format message.
The date can consist of
numbers for the three
parts. Any additional
characters will be classed as
an invalid entry where an
invalid format has been
given.

The user has been alerted of the
date format to use and the date
was not accepted.

Modify the
date to
include
characters as
the year
value.

Differentiation
Maths
16/01/2ol7
Homework

This test will enter a date in
an incorrect format to
prompt the program for an
incorrect format message.
The date can consist of
numbers for the three
parts. Any additional
characters will be classed as
an invalid entry where an
invalid format has been
given.

The user has been alerted of the
date format to use and the date
was not accepted.

Overall, every test passed without failure. Therefore, I can conclude that this program is very robust
in design. All invalid inputs were rejected when tested to ensure that all variables will be expected in
terms of content, length, format and type. Where an error message occurred, the user could read
the information given to learn what the issue was with their entry. This is a useful feature as the user
knows exactly where the issue is and con resolve it promptly to save the task.

Chester Lloyd Computer Science 184

3.4.2 - Success of the Solution:
The solution that I have created has worked very well.

The process of adding a task to this program functions as intended without fault. The validation on
the task name will display relevant dialogue boxes if the user does not enter a name. This is the
same with the subject, whereby there must be data present in order to pass the validation. Each of
these tests and their respective results can be found after developing the notes page from my
client’s feedback. Each test consisted of a screenshot representing the result. These screenshots are
the dialogue boxes that are presented to the user if an invalid input is detected. I deliberately
attempted a variety of invalid inputs that were all found and the appropriate message was given.
The due date for the task is validated in multiple stages. Whilst adding a task, the day and month is
given as an integer value whilst the month can be selected from a dropdown menu of strings. The
month is converted to its integer format where before checking if the day selected is within the
correct range for the selected month. If not, a message is displayed so that the user is aware of the
issue and allows the user to correct this. If the day and month are valid, it should then check if the
year is a leap year. This will only affect dates where the user has selected February as the month.
The results for these tests can be found just after the other two validation checks. There are a series
of tests that I had performed to ensure that the date validation works correctly as there are many
aspects to the date that can be altered to give an invalid entry. I attempted every method for invalid
date entries from, trying an invalid date to using the incorrect format. If the date is valid, it will
continue to validate the next piece of data, else it will alert the user of the maximum number of days
available on February for the year selected. Finally, if the tasks type has not been selected on any
page, the user is also alerted. All message boxes that show have an ‘OK’ button which will dismiss
the pop up. Once dismissed, the program will continue to show the add task page with the data that
they’ve entered so that they can easily resurrect any issues without the need to restart this process.
The task will only be entered as a record in the database if the data validation checks have all
passed. This aspect of my program is a key function to the core of the program whereby the user
records their tasks for future reference. Without this, sorting tasks may become problematic as SQL
errors would arise if there were any invalid dates present. As well as this, if there were any fields
mistakenly left empty by the user, remembering what the task data should be at a later date could
disrupt their organisation, the main problem that this is a solution for.

These validation methods also apply and function perfectly when modifying the tasks. On the tasks
page, the user has the option to modify a task by simply clicking the crayon icon by the task which
they’d like to edit. This will open a page with their selected task at the top in the same format, with
the addition of a large text area positioned below. The task name and subject are validated with the
same function and therefore if they are empty upon saving the task, the user will be alerted with a
pop up message. The date is also validated with the same rules and are all applied correctly. The task
type cannot be changed and therefore does not require additional validation. The text area below
that is designated for the user’s notes on the task also require no validation and therefore can be
left empty without causing any issues with the saving process. The notes area was incorporated as a
result of stake holder feedback. Testing had been performed to ensure that the notes saved to
specific tasks and these can be found in the testing chapter. These tests confirmed that the user has
the ability to write additional information for their tasks and save them without any issues. I had
implemented usability features within this page as the user can easily see what this page is designed
to do. There is a clean, set layout following on from the previous page. The large text area allows
quick access to the tasks notes and there are only three buttons on this page with clearly marked
icons defining their functions.

Each sorting method rely on using SQL statements when querying the database table. The tasks can
be sorted by the name, subject and date in any order form ascending to descending or vice versa.

Chester Lloyd Computer Science 185

There is also the option to sort by task type using the tabs along the top of the program and then
also apply any additional sorting to this set of data. During the testing of this data with sample tasks,
they all sorted and represented the data correctly. Each of these sorting options had been
thoroughly tested with every tab confirming that my success criteria regarding the use of sorting
methods has been fulfilled to its fullest extent.

Tasks which were overdue were highlighted in red text. Again, in my testing chapter, the results to
this can be found through the tests. Not only did it appear to function correctly in the testing for
overdue tasks, it also responded appropriately in every other test scenario where overdue tasks can
be seen in red text. Again, this fulfils another success criteria.

The school maps load perfectly where a back button will return the user to the previous tasks page,
whichever the user had selected. The contact details would open up any relevant applications when
the links were clicked. The phone number will open any telephone applications, the email address
would open a mail client with the ‘to’ field filled in with the correct details and the website will open
a web browser with the website. This works similarly to the useful websites page. Each website
within this list will all launch the web browser or open a new tab if the user’s default web browser is
currently open.

In review, the program functions as expected and all pages load from one page to another. All
validation methods that I have written work perfectly and always alert the user of any issues,
allowing the user to modify their inputs without losing any progress made. All buttons are loaded in
the correct colour depending on the tab that the user had secreted and link to the pages as
designed.

Usability features were at the core of this solution. Some of my success criteria involved usability
features as their main aim. The main goal with this program was to create an electronic planner to
aid the organisation of the student. In order for this to be an effective solution, the user must be
able to use this software well. I created a clean theme with no bloat with hidden or complicated
menus. Every button that I had placed on the main activity followed the same material design
theme. All buttons matched in colour and size and relative in position. I chose the most relevant icon
I could to highlight the function of the button. Usability features can be found in the page sorting
algorithms too. Where the up or down button would be disabled as appropriate so that the user can
clearly see that scrolling is not available in that direction. On the tasks page, only essential
information is displayed per task maintaining the clean theme. To view the additional task info, an
icon beside the task can be used to show all details available for that task, including the notes area.
In addition, the sorting methods that I had included were placed within the menu bar. This removes
them from the main page so that they are not in the user’s main focus. By using the menu bar, I
could create a dropdown list of these sorting methods and group them too, adding to the
organisation of the program.

There are still features that could be added to this program to improve its role as a student
organiser. For future development, I could make the program dynamically adjust its contents with a
change in window size. This would make it easier for the student to view more of their tasks at any
given time by increasing the size of the window. Another feature that is lacking is the ability to set
event reminders, where a notification could appear at a set time before a task is due. This was a
feature used in the other solutions that I had researched. Other than the software improvements,
more planner material could be integrated to give the user access to more useful data such as a
school/personal calendar, conversion tools and revision guides, for example.

Chester Lloyd Computer Science 186

There were criteria that had not been met. This criterion set the objective that the program should
be able to delete tasks automatically. My initial idea for this was to add the option for the user to set
an auto delete feature to remove any tasks from the database based on the duration since they had
become overdue. This feature would automatically de-clutter any tasks that are no longer needed so
that the user can focus on the current tasks. For further development on this project, I would add a
settings page where this feature would reside and the user could adjust the time in terms of days for
the rule.

The final specification that I had stated in the measurable success criteria states the following. “The
software must be presented clearly so that it is easy to use. It should be presented in a logical
manner where widgets are placed with care and appropriately. The design should be aesthetically
pleasing.” Due to the nature of this, I cannot show success nor can I prove any failure of this point
through testing myself. The success of this point relies on the opinion of the user and therefore I
have decided to create feedback forms. These forms will allow me to question the user group to
receive feedback on the program.

I can use these forms to assert that the final point has been met. To do this, I can ask multiple
opinionative questions regarding the design and the user’s thoughts of the software. Using these
results, I could confirm if the points have been met by taking the result that the majority of user’s
opted for.

Chester Lloyd Computer Science 187

Student 1:

Statement Agree Neutral Disagree Comments

The program as a whole worked as
expected. ✔

Specification

Tasks should be easy to create with the
following data: name, subject, due
date and type

✔
Yes, the different forms
were clearly labelled and
all require valid inputs.

It should be simple to make any
changes to the tasks. ✔

Any of the information
can be edited quickly.

The user should be able to view and
edit notes for individual tasks. ✔

The tasks should highlight red in text if
overdue. ✔

Yes, although this took
me a day to test.

The user should be able to sort tasks by
their type. ✔

Information

School maps were clear. ✔
They appeared a little
granular.

School contact details are displayed in
a methodical manner. ✔

Both centres have the
useful information listed
under their respective
badge.

Useful websites could be opened in any
web browser. ✔

When clicked, they
opened in the default
browser.

GUI

The design is aesthetically pleasing. ✔

The program flowed in a logical order. ✔

The user interface was easy to use. ✔
Was slightly odd to edit a
task to view its notes.

The layout of pages was logical. ✔

Chester Lloyd Computer Science 188

1. What aspects of the program could be improved?

The school map pictures could be made slightly larger to provide us with a sufficient
chance to see it.

2. Were there any features that could be included to improve functionality of this program?

Having a reminder function so the user can tell the program to remind them a certain
amount of time before a task is due. The program can then have an alert pop up when
the program starts with the task and when it is due (time remaining).

And maybe have an orange colour for next one or two days.

3. What worked well?

The program allowed adding and removing tasks, with different types and they were
added in their respective categories. Also, the tasks were highlighted red if they were
past their due date which made them noticeable.

Chester Lloyd Computer Science 189

Student 2:

Statement Agree Neutral Disagree Comments

The program as a whole worked as
expected. ✔

Specification

Tasks should be easy to create with the
following data: name, subject, due
date and type

 ✔

The form was clearly
presented with small
labels. A date picker
would be preferable for
entering the date.

It should be simple to make any
changes to the tasks. ✔

The user should be able to view and
edit notes for individual tasks. ✔

The tasks should highlight red in text if
overdue. ✔

The user should be able to sort tasks by
their type. ✔

Information

School maps were clear. ✔ Could be made larger.

School contact details are displayed in
a methodical manner. ✔

All the links would open
appropriate applications.

Useful websites could be opened in any
web browser. ✔

Each link opened a new
tab in my default
browser.

GUI

The design is aesthetically pleasing. ✔

The program flowed in a logical order. ✔

The user interface was easy to use. ✔

The layout of pages was logical. ✔

Chester Lloyd Computer Science 190

1. What aspects of the program could be improved?

Could use a date picker to select the due date. This would be easier to view legitimate
dates before selecting the submit button and receiving a message informing me of the
incorrect values. It will also be easier to see a calendar moth with the days labelled.

The school map could be larger or add a method to zoom into sections.

2. Were there any features that could be included to improve functionality of this program?

Include a calendar view so that students can see their whole week / month at a time.

3. What worked well?

Adding and modifying tasks was easy to do with easy to use input boxes. Where data
was required, the entry boxes were clearly labelled and if an incorrect value was
entered a message box appeared with the issue.

The tasks sorted correctly when I clicked any of the sort options.

The GUI looked nice.

Chester Lloyd Computer Science 191

Student 3:

Statement Agree Neutral Disagree Comments

The program as a whole worked as
expected. ✔

Specification

Tasks should be easy to create with the
following data: name, subject, due
date and type

✔

It should be simple to make any
changes to the tasks. ✔

The user should be able to view and
edit notes for individual tasks. ✔

The tasks should highlight red in text if
overdue. ✔

The user should be able to sort tasks by
their type. ✔

Information

School maps were clear. ✔

School contact details are displayed in
a methodical manner. ✔

Useful websites could be opened in any
web browser. ✔

GUI

The design is aesthetically pleasing. ✔

The program flowed in a logical order. ✔

The user interface was easy to use. ✔

The layout of pages was logical. ✔

Chester Lloyd Computer Science 192

1. What aspects of the program could be improved?

I would like to be able to resize the window – if I am using the program on a large
monitor, it would be nice to be able to use all of the space available.

2. Were there any features that could be included to improve functionality of this program?

I would like to be able to use a smartphone client – this would allow me to view and edit
my tasks from anywhere at any time, as I do not always have access to my computer.

3. What worked well?

The program solves the problem of storing a list of tasks very well. It is easy to use, with
all of the features being easy to find. I like having control, such as the ability to sort the
list however I choose. The user interface is very aesthetically pleasing: the design is
enough to make the program stand out but not enough to detract from its usability.

Chester Lloyd Computer Science 193

Review:
Overall, the results from these students were very positive. All three students that participated
agreed that the program worked as expected.

Students agreed with the majority of specification points. The purpose of including the success
criteria as questions was to test how well I have created a solution to a set of objectives. As the
overall result was very positive for each specification point, students found that the program
implements these very well. One student gave the comment, “the different forms were clearly
labelled and all require valid inputs.” Here, the student had commented upon the data validation
that my program does when checking the user’s inputs. However, another student would prefer a
date picker, rather than the three drop down boxes that I have used.

The information section was also very positive, where only the ‘school maps’ question was answered
more neutral than positive. It appears that the students would prefer larger maps of higher quality. I
agree with their comments on this as they .gif image that I had used for the two maps did lose
quality from the original. As for the size, I could take this feedback for further development of this
project to produce a method to zoom in on the map.

The final multiple choice set of questions were regarding the graphical user interface. This is the
most important set of questions on this form as I will be collecting the user’s opinions for an
objective element of the success criteria. From the results, all students though that the design of the
solution was aesthetically pleasing, the layout of the pages were logical and the program flowed in a
logical order. This is very positive feedback and supports the conclusion that my final specification in
the measurable success criteria has been sufficiently met.

As well as multiple choice questions, I added in three open ended style questions so that I could get
user’s opinions and their thoughts for improvements for future development. Extending from their
previous comment, a student wrote: “Could use a date picker to select the due date. This would be
easier to view legitimate dates before selecting the submit button and receiving a message
informing me of the incorrect values. It will also be easier to see a calendar moth with the days
labelled.” Currently, to enter a date, the user will need to select three values from a set of dropdown
boxes. This system works but there is no way of knowing the day (name) of the date selected unless
an external calendar is used. As well as this, the date could be invalid and the user would be
required to wait until submission before a message box appears with the details. This is inefficient
and a date picker would be a much more suitable alternative. This eliminates any chance of invalid
inputs and is much easier to work with as dates are set out in sets of months with the day columns.

The next question asked for any features that could be included to improve functionality of this
solution. A student suggested that the user should be able to set a reminder for their tasks where a
message box could appear to alert the user. A useful feature to ensure users will not forget about a
task and therefore increasing the productivity aspect of the software. Another point was that the
tasks will be highlighted in red text if they are overdue and that using an orange text colour for tasks
that are upcoming within a set number of days would be useful. A calendar view would be another
useful feature so that students can view their whole week or month.

Finally, what worked well? Students commented on the way the program worked, “Adding and
modifying tasks was easy to do with easy to use input boxes. Where data was required, the entry
boxes were clearly labelled and if an incorrect value was entered a message box appeared with the
issue.” Here, this shows that the input validation that I added to ensure smooth running of the
program is working as intended and therefore supports that this solution is successful. Additionally,
there was very positive mentions of the sorting algorithms: “The program solves the problem of

Chester Lloyd Computer Science 194

storing a list of tasks very well. It is easy to use, with all of the features being easy to find. I like
having control, such as the ability to sort the list however I choose. The user interface is very
aesthetically pleasing: the design is enough to make the program stand out but not enough to
detract from its usability.”

Overall, the feedback that I received was very successful in that all of my success criteria has been
met and a range of suggestions for future development and improvements were given.

Chester Lloyd Computer Science 195

3.4.3 - Describe the Final Product:
The finished product is complete with all of the features as outlined in my initial specification. The
program can store tasks of type homework, coursework and exam. The user can modify these tasks
if necessary and any data entered will be validated using the same rules. A sorting system allows the
user to view their tasks based on time, subject and task. This is a useful feature as the student could
easily identify what the user needs to focus on and show which tasks are due soon compared to
others. Any tasks that have a due date that has expired should be highlighted red so that the user
can clearly see which tasks are overdue. Tasks that are no longer required can be deleted from the
database easily. As well as the students being able to write their homework, coursework deadlines
and exam dates there is an easy access data bank where information relevant to the school can be
found. I have included a school map, contact details for the school with links to open external
applications and a list of useful website links.

Chester Lloyd Computer Science 196

3.4.4 - Maintenance and development:

Maintenance and Limitations:
Some aspects of this project could be amended to suit additional needs of the users. The program is
very static in terms of its structure. For example, the theme cannot be changed and a maximum of
four tasks are displayed on each page. Some users may wish to adjust these properties and
therefore a settings menu would be a suitable addition in the future. Additionally, the window is a
fixed width and height. An improvement would be top allow the user to change the window size and
update the contents dynamically so that more tasks can be displayed on any given page.

There are a few limitations in this version of the software including the amount of data that can be
entered for each task, the types of task available and the length of the data that can be viewed in
the tasks page. To maintain this, if the user should require more fields to store data within, the
database would need updating and a method for inserting this additional information should be
included. As for the amount of characters that can be seen for each piece of data in the tasks page,
the size of the entry boxes could be adjusted in length so that more text is visible without the need
for scrolling. Another solution would be to allow the user to dynamically adjust the width of the
program and scale to contents within.

The program is mostly self-sustaining. The database file stores all of the user’s tasks and will grow
and shrink in size when required. If there is an issue with the database, for example a table could
become corrupted, then the database file can be easily deleted. Upon the next load of this program,
a new database file will be created and previous issues should be solved. However, this will case any
tasks previously saved to be permanently deleted. If, in the future, the stake holders would like to
store more information about a task, then the program as a whole will need updating. Entry widgets
and validation methods would need creating so that the user can enter this new data and the
database file or table would require more columns to save the additional data.

Chester Lloyd Computer Science 197

Future Development – Improvements to Limitations:
This solution works and has met or partially met most of the success criteria that I had created
during the planning stage of this project. There are still possible improvements to be made in the
form of adding new features or modifying existing features. I will be using the results from the
feedback forms to collect ideas for future development. As well as feedback, I will be using my own
ideas to ensure that the success criteria could be fully met if this project were to continue in the
future.

There was one specification within my success criteria that has not been met. This stated that the
program should be able to “automatically delete old tasks.” Tasks can be deleted but there is no
option to automatically remove them from the database. I could include a settings page where the
user can make adjustments to the running of the program. I can include the option to automatically
remove old tasks within this page, allowing the user to select the number of days a task should be
allowed to remain once expired.

The only other specification that was only partially met was that, “There should be school
information available to access (including: a school map, term dates, contact details and website
links).” The program has currently an area to access the school map, contact details and useful
websites, however there is no inclusion for the term dates. This is a calendar based project and to
include this feature, I could create a new page in the ‘Information’ tab. Alternatively, I could create
additional options in the settings page to allow the user to set term dates which will automatically
insert into the database.

From the feedback form, there were requests to add a date picker to select a due date as it would
improve the functionality. This could be included in a future development where I will remove the
old entry methods for the date and replace them. In addition to this, I could include a week or
month overview to allow students to view multiple days on a single page. The inclusion of this would
result in the program becoming similar to a physical planner or calendar. A result which would
improve the functionality as users can easily view when individual tasks are due respective o each
other without the need to scroll between pages or look up corresponding dates with days. Another
improvement could be to allow times to be included with the due date to assist the calendar view
and reminders.

In future development, I could make improvements based on the limitations of the software. The
window size is fixed, as is its content. I could redesign the pages so that the window can be resized
dynamically and the content adjusts to this parent dimensions. To do so, I would have to increase
the complexity of the page sorting algorithm to incorporate the height of the window to allow more
or fewer tasks per set. This is because the default size as it is now can comfortably fit four tasks per
set (per page). If the height is adjusted so that there is a larger area, there will be space free where
tasks could be positioned. I could add another set of options to the settings page to allow the user to
add more fields to their tasks. This will require the program to incorporate dynamic horizontal
scaling of the window to fit with the one task per row theme.

	3.1.1 - Problem Identification:
	3.1.2 - Stakeholders:
	3.1.3 - Research the Problem:
	Essential Features:
	Limitations:

	3.1.4 - Specify the Proposed Solution:
	Requirements:
	Measurable Success Criteria:

	3.2.1 - Decompose the Problem:
	Incorporation of Agile Development:
	Structure of the Solution:
	Set up Theme:
	Load Tasks from the Database:
	Calculate the number of tasks in the database and create an array of them
	Calculate the total number of pages for each tab (based on 4 tasks per page)
	Create the sets of task data
	For example:

	Display the Tasks:
	For example:
	When loading page one, the values would be selected as follows:
	When loading page two, the values would be selected as follows:

	Add Tasks:
	Delete Tasks:
	Information Pages:

	3.2.2 - Describe the Solution:
	Overall Plan:
	Header:
	Home Page:
	Homework Tab:
	Coursework Tab:
	Exams Tab:
	New Tab: Overview
	New Tab: Homework
	New Tab: Coursework
	New Tab: Coursework

	Load Tasks:
	Pseudo Code:
	Data Table:
	Flowchart:

	Add Tasks:
	Pseudo Code:
	Data Table:
	Flowchart:

	Database:
	Usability Features:

	3.2.3 - Describe the Approach to Testing:
	Test Plan:
	Test Data:

	3.3.1 - Iterative Development Process:
	Program Setup:
	Menu Bar:
	Tab Selection:
	Page Setup:
	Database – Reading Tasks:

	Page Sorting:

	Development Review:
	Load Rows:
	Page Up:
	Page Down:

	Development Review:
	Add Task:
	Input Validation:
	Writing to Database:
	Cancel Adding a Task:

	Client Meeting:
	Adjustments:
	Testing of the Amendments:

	Development Review:
	Sorting:
	Time: Soonest
	Time: Oldest
	Task: A-Z
	Task: Z-A
	Subject: A-Z
	Subject: Z-A
	Refreshing Task List:

	Client Meeting:
	Adjustments:
	Testing of the Amendments:

	Development Review:
	Delete Task:
	Testing of the Amendments:

	Development Review:
	Client Meeting:
	Adjustments:
	Testing of the Amendments:
	Testing of the Amendments:

	Modify Tasks:

	Development Review:
	Information Section:
	Adding the Information Tab:
	School Map:
	Contact Details:
	Useful Websites:

	Client Meeting:
	Adjustments:
	Deleting a task:
	Returning to the Tasks Page:
	Saving a Task:
	Validating Task Name:
	Validating Task Subject:
	Validating Task Date:
	Write Task:

	Testing of the Amendments:
	Testing the Edit Page:
	Testing the Input Validation:
	Testing the Update Function:
	Testing the Delete Function:

	Development Review:
	3.4.1 - Testing to Inform Evaluation:
	Testing the Solution:
	Adding a Task:
	Modifying a Task:
	Deleting a Task:
	Sorting Tasks:
	Overdue Tasks:
	Databank:

	Usability Testing:
	Justification with Evidence:
	Clean, Simple GUI
	Input Validation:
	Appropriate Input Methods
	Clearly Labelled Buttons

	Testing Robustness:

	3.4.2 - Success of the Solution:
	Student 1:
	Student 2:
	Student 3:
	Review:

	3.4.3 - Describe the Final Product:
	3.4.4 - Maintenance and development:
	Maintenance and Limitations:
	Future Development – Improvements to Limitations:

